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1. Introduction

Structures health monitoring (SHM) is focused on detection of damage in structures at early stages
using advanced technologies. Pavement health monitoring is an extension of the SHM concept that
deals with assessing the structural state of pavement infrastructure systems. Distresses
concentrated in asphalt concrete (AC) layers can lead to the failure of the pavement structure over
time. The maximum tensile stresses are commonly developed at the bottom of the AC layer under
repetitive loadings. As a result, cracks usually initiate at the bottom of the asphalt layer and start
propagating to the surface of the pavement. This so called bottom-up fatigue cracking is one of the
main failure modes in asphalt pavements. The fatigue life of pavements is mainly related to the
nature and the amplitude of the applied loading (Miller and Belliger, 2003). A dynamic analysis
and a realistic loading modeling are essential to provide accurate prediction of the pavement
response. However, most of traditional pavement analysis methods assume a uniform circular
loading area and a stationary analysis. Previous studies show that these assumptions may result in
an unrealistic pavement response (Cebon, 1986; Yoo and Al-Qadi, 2007). According to a study
developed by Cebon (1986), dynamic analysis may increase the fatigue damage and rutting
damage by 4 times and at least 40 % respectively. Furthermore, Yoo and Al-Qadi (2007) showed
that the dynamic pavement response is usually higher than a quasi-static analysis. In fact, the
pavement dynamic response is essentially a function of its natural frequency as well as the external
loading frequency. Gillespie et al. (1993) showed that a vehicle speed of 30 mph has a loading
frequency of about 4.6 Hz, and 6.5 Hz for 51 mph. Lourens (1992) reported that the magnitude of
the stress and deflections in pavement highly depends on the loading frequency and they are
different from the results given by a static loading. Yoo and Al-Qadi (2007) concluded that there

is about 39 % difference on the tensile strain at the bottom of the asphalt layer between a static and



transient dynamic analysis. In addition, flexible pavements are usually modeled as a linear elastic
multilayer systems based on the theory of the two-layered elastic systems developed by Burmister
in 1943 (Huang 1993). However, hot-mix asphalt (HMA) behaves as a viscoelastic material. This
type of material exhibits time, rate and temperature dependency. Al-Qadi et al. (2004) and Elseifi
et al. (2006) showed that the approximation of multilayered elastic system underestimates the
pavement responses. Furthermore, the HMA mixture behaves as an elastic material only when for
low temperature and high loading frequency. Therefore, an efficient pavement modeling should
consider both the variation of the loading in time and space, the material on the frequency, and the
amplitude of the applied stress.

From a sensing perspective, strain gages are widely used in roadways to detect variations in strains
associated with pavement deterioration (Dong et al., 2012; Xue, 2013; Lajnef et al., 2013; Yang et
al., 2014). However, the installation of many of the existing sensors demands considerable care
during construction. The commonly-used H-shaped strain gages require precise individual
placement and wiring systems. To cope with these limitations, recent development in the field of
pavement health monitoring has revealed the capabilities of the wireless sensors networks (WSN)
(Bennett et al., 1999; Attoh-Okine and Mensah, 2003; Ceylan et al., 2013; Alavi et al., 2016a,
Chatti et al., 2016). However, nearly all of the available wireless sensors need an external power
supply to activate the sensor. As a consequence, periodic replacement of the sensor battery is
needed. This becomes more challenging and sometime impractical for the long-term pavement
health monitoring. Therefore, energy harvesting methods have been used to self-power the sensors
in structures. One of the most efficient energy harvesting methods is the use of piezoelectric
transducers. This family of material has the ability of converting the mechanical energy into an

electrical energy by harvesting the micro-strain energy from the structure. Thereafter, by
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embedding a network of the piezoelectric transducers inside the asphalt pavement layer, they can
generate electricity needed to empower the sensor. In this context, a self-powered wireless sensor,
previously developed at Michigan State University (MSU) based on the “smart” pebble concept
(Huang et al., 2010). Several studies looked at the applicability of this sensor for SHM (Lajnef et
al. 2013; Alavi et al. 2016a,b,c). In the pavement health monitoring domain, Lajnef et al. (2013)
showed that the pavement fatigue life can be predicted using the sensor. Alavi et al. (2016a) have
tested the ability of the sensor for detection and localizing bottom-up cracking in asphalt pavement.
In their study, they embedded the sensor inside the AC layer using a spherical epoxy packaging.
The sensing system was placed two inches far from the bottom of the layer. Finite element (FE)
simulations were also performed to assess the strain amplitude changes due to the bottom-up
cracking (Alavi et al. 2016a). The developed FE models were based on an elastic material behavior
and a quasi-static loading. Moreover, Alavi et al. (2016a) showed that only the sensors located
above the cracks experience a notable change due to the damage progression. However, a
disadvantage of embedding the sensors at the bottom of the AC layer is that they may be damaged
due to excessive stresses. Furthermore, new pavement construction projects are negligible when
compared to the extent of the exiting pavement network. It is thus more critical for State Highway
Agencies (SHASs) to adopt monitoring techniques that can be adapted to existing pavements. It
should be noted that surface sensing technologies such as remote sensing are commonly used for
the monitoring of existing pavements. These methods use the electromagnetic spectrum to identify
the surface and subsurface defects. In this context, ground-penetrating radar (GPR) employs the
electromagnetic energy to detect subsurface anomalies. GPR can be used for both measuring the
pavement thickness and locating voids. GPRs are able to identify cracks and measure cracks depth

between 50 to 160 mm in flexible pavements. They can be attached to a service vehicle travelling
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at highway speed (Zhou et al., 2012). However, major limitations of such methods are that they
need notable energy to operate and may not be practical for continuous long-term monitoring
purposes.

In order to cope with the limitations of the existing monitoring methods, this study proposes a self-
powered wireless surface sensing approach for the detection of the bottom-up cracking in existing
asphalt pavements. The propose method would not have major interference with regular pavement
maintenance activities. A detailed study was conducted on the minimum spatial distance of the
sensors from the damage zone, referred to as resolution, to provide sound detections. A dynamic
analysis of a moving truck at highway speed was carried out through a realistic FE modeling.
Different damage scenarios were considered by changing the size of the damage zone and the AC
material properties. The sensor output was modeled based on the strains extracted from the surface
of the AC layer at different sensing nodes. The sensors positions were defined in the longitudinal
and transverse directions. Thereafter, features were extracted from the sensor data and fused to
define new set of explanatory features. Finally a probabilistic neural network (PNN) classifier was

used to classify the predefined damage scenarios.

2. Finite Element Modeling of Pavement Structure Subjected to a Moving Load

2.1. Geometry and FE model

ABAQUS software was employed to simulate the response of the pavement under a moving load.
In the FE analysis, the stress/strain response is sensitive to element type and size as well as
boundary conditions. In this study, 3D FE models were developed as they are more appropriate
compared to a 2D axisymmetric model. In fact, a 3D model allows simulating the contact stresses

between the tire footprint and the pavement surface. The pavement model was meshed using two

12



different types of elements: eight-node linear brick elements with reduced integration (C3D8R)
and eight node linear infinite elements (CIN3D8). The standard finite elements were used to model
the region of interest and the infinite elements were deployed in the far field region. This type of
elements allows providing silent boundaries to the FE model in the dynamic analysis and reduces
the number of elements at far field (ABAQUS, 2010). These elements have a special shape
function to vanish the displacement field when the coordinates approach infinity. Such boundary
type can minimize the reflection of the shear and dilatational waves back into the FE mesh (Al-
Qadi et al., 2010). In a dynamic analysis, the infinite elements introduce additional normal and
shear tractions on the FE boundary using a viscos damping boundary. The introduced normal and
shear stresses are proportional to the velocity components as follows (Wang, 2011):
0= pcyl 1)
T= pc¥ (2)
where: p, g, Tcy, s, i and v are the material density, normal stress along the interface between the
FE/infinite elements, shear stress along the interface FE/infinite elements, longitudinal wave
velocity, shear wave velocity, normal velocity and tangential velocity, respectively. The wave

velocities are given by the following expressions (Wang, 2011):
_ (1-v)E
@ = \’(1—2v)(1+v)p (3)
_ E
Cs = \’2(1+v)p (4)

where E and v are the Young modulus and Poisson’s ratio, respectively. In this study, the length

of the pavement section was 7 meters in the longitudinal direction (parallel to the traffic direction)
and 6 meters in the transverse direction (perpendicular to the traffic direction). The pavement

thickness was 6.3 meter. The pavement was composed of three layers: AC, base and subgrade
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layers. The thickness of the AC, base and subgrade layers are 100 mm, 200 mm and 6000 mm,
respectively. Large model dimensions were used to reduce the edge effect and to achieve a full
passage of the tire on the pavement. Fig. 1 displays the pavement model as well as the meshed

cross section of the AC layer.

(@) (b)

Figure 1. (a) The 3D FE model of the pavement structure, (b) Meshed cross section of the
AC layer

According to a study conducted by Duncan et al. (1968), location of the infinite elements should
be at least 12 times the radius of the loading area (R) in the horizontal direction. In this work, the
infinite domain was located at approximately 16R from the initial and final location of the load
center in the longitudinal direction, and 17R in the transverse direction. The total number of
elements was 393,796 elements from dived into 363,440 element of type C3D8R and 30,356
element of type CIN3DS8. Fig. 2 displays the structure of CIN3D8. A fine mesh was used around
the loading path and a coarse mesh far away from the load. Different simulations were conducted
to study the effect of the element dimensions on the pavement response. It was found that an
element with dimensions of 20 mm x 20 mm could accurately capture the stress/strain response

14



under the wheel footprint. The element thickness was chosen to be 10 mm for the AC layer, 20
mm for the base and from 20 mm to 500 mm for the subgrade. Furthermore, in a dynamic analysis,
it is recommended that the maximum element size should not exceed 1/12 the minimum length of
the elastic waves propagating inside the structure. The natural frequency of a typical flexible
pavement, the vehicle loading frequency and the stress wave velocity are around 6-14Hz, 0.1-
25Hz, and 100 m/s to 600 m/s, respectively. Accordingly, the defined element size is small enough

to satisfy the minimum element size requirement.

Figure 2. The CIN3D8 element structure

2.2. Dynamic Analysis

For the pavement analysis, the loading can be modeled as a static, quasi-static, or dynamic loading.
If the loading is stationary, a static analysis is suitable for the analysis. A quasi-static approach is
a sequence of static loads that are moving from one position to another at each time step. Static
and quasi-static do not include the effect of inertia forces. However, a dynamic analysis is more
appropriate if the load is moving with a certain speed, in which the loading location changes in
time and location according to the truck speed,. Therefore, this type of analysis was used in this
study. The moving load problem can be treated as structural dynamic problem as it considers

slower load changes than wave propagation problems. The response in a wave propagation
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problem is rich in high frequency mode shapes. The analysis time is also in the order of the wave
travel time across the structure. Therefore, a very short step-time is required for this type of
analysis. In a structural dynamic problem, the response is dominated by low modes and the effect
of high modes is insignificant (Chopra, 2001, Bathe, 1996). If the time required for the stress waves
to propagate through the whole structure does not exceed a small portion of the load rise duration,
the problem can be assumed to be a structural dynamic problem. As the vehicle speed is much
smaller than the stress wave speed (100 m/s to 600 m/s), the problem was treated as a structural
dynamic problem in this study. The equation of motion of a multi-degree of freedom system is as
given below:

Mii+Cu+Ku=F (5)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, u is the
displacement vector and F is the external force vector. The first term of the equation M ii represents
the inertia forces and (C u + K u) represents the internal forces.
There are two ways to solve this type of nonlinear equations; an implicit direct integration or an
explicit direct integration method. The implicit procedure is more suitable for structural dynamic
problems and usually provides good numerical stability. For the method, the displacements at two
consecutive times are calculated by solving a set of nonlinear equation simultaneously.

In a dynamic analysis, the selection of the time increment is very important. According to Bathe

(1996), the time increment At should be less than or equal to 207 ! :
dominant

At < !

(6)

20 fdominant

where f,jominant 1S dominant frequency of the response of a structure or of the loading. Herein, the
time increment was taken 0.001 s which satisfies the time increment requirement as the highest

loading frequency is usually lower than 10 Hz.
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2.3. Material Characterization

Each layer of the modeled pavement had unique material properties. The HMA layer had
viscoelastic properties while an elastic behavior was considered for the base and subgrade layers.
The HMA modulus is time (frequency) and temperature dependent. In fact, the state of the stress
in the AC layer does not only depend on the current strain but on the entire strain history. The
expression of the stress in linear viscoelasticity can be expressed by a Boltzmann superposition

integral as follows (Michalczyk, 2011):
t de
ot) = [, E(t— T)—-dt (7)
In the present study, a generalized Maxwell model was used for representing the linear-viscoelastic

behavior of the HMA. This model is a combination of Maxwell elements (one spring and one

dashpot) connected in parallel with a spring as shown in Fig 3.

E(mé Elg EZ eese F; -..En

n _iH N2 |_|_| ni \_l_l Nn I_I_

Figure 3. Generalized Maxwell model consisting of n Maxwell elements Connected in
parallel

A single element Maxwell model is composed by one spring and one dashpot mounted in series.

Therefore, the relationship between the stress-strain is expressed as follows (Michalczyk, 2011):
() = L0 4 70 8)

E n

where E is the elastic modulus and 7 is the viscosity parameter.
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If the material is suddenly subjected to a deformation &,, the solution of the precedent equation
becomes:
— _t =1
o(t) = Eeg, exp( T)Wherer == 9)
where 7 represents the relaxation time. By performing a summation over the n Maxwell elements
shown in Fig. 3, the stress equation becomes:
t t
o(t) = Eneg+ Xioi Eigg exp (— ;) = (Ex + Xi-,E;exp (— ;)) & (10)
l l

Therefore, the relaxation modulus:

E(t) = %” = E,+ Y, E exp (— Ti) (11)

This expression is a Prony series representation. The equilibrium modulus is E,, and the
instantaneous modulus Eo is the value of E(t) at t = 0 given by:

Ey= Ep+ I E (12)

By replacing the equilibrium modulus E,, by (E, — X'~ E;) , Eq. (11) can be rewritten as follows:

E(t) = Eo— XL B (1—exp (- 1)) (13)

Therefore, the Prony series representation is fully defined by (Ei, t;). For the FE modeling,

ABAQUS uses the dimensionless Prony series representation based on the shear (G) and bulk (K)

moduli to define a viscoelastic behavior (Michalczyk, 2011):

_ _E®
G(e) = 2 (14v) (14)
_ _E®
k() = 3 (1-2v) (15)
If we divide both expressions by the initial values Go and Ko respectively, we obtain:
gty =1- %, (1 —exp(-) (16)

4
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and:

T T t

RO =1- 3 k(1 —exp(-5) (17)
Therefore, there are three parameters required in order to define a viscoelastic material property in
ABAQUS (Michalczyk, 2011): the dimensionless shear relaxation modulus g; , the dimensionless
bulk relaxation modulus k;, and the relaxation time z;. The relaxation modulus of the AC material

used in this work was defined by four constants ci (i=1,2,3,4) from the sigmoid function given by

the following expression:

C2

Log(E(t)) = ¢ + 1+exp(—c3—c4 log(ty))

(18)

where ¢, is the reduced time, and c; are coefficients related to the type of the AC material. In this
work, the constants c; were taken as follows:

C1=0.639

C2=3.341

C3=0.709

- C4=-0.691

A MATLAB code was developed to fit Eqg. (13) to the relaxation modulus given by the sigmoid
function (Eqg. (18)) in order to obtain the Prony series coefficients. Fig. 4 displays the results of the
fitting of the sigmoid function to the Prony representation. On this basis, 33 Prony coefficients
were calculated. Thereafter, the dimensionless coefficients g; and k; were obtained based on the
Prony coefficients Ei. The instantaneous modulus was calculated based on the equilibrium
modulus and the 33 coefficients as expressed by Eq. (19):

Ey = Eo + X33, E; = 9548 MPa (19)
Table 1 presents the values used for the definition of the viscoelasticity material property for the
AC layer. The Poisson’s ratio was equal to 0.35.
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Figure 4. Prony series fitted to the original sigmoid function

For the AC layer, there is no need to define an additional structural damping as it is behaves as a
viscoelastic material. However, as the base and the subgrade are elastic materials, it is important
to include an additional damping to include the effect of energy absorption when the wave
propagates through the soil. Therefore, a 5 % damping ratio was defined for both the base and the
subgrade layers. Table 2 presents the material properties of the three pavement layers.

2.4. Loading

2.4.1. Contact Area

Tire-pavement interaction is a complex phenomenon due to the tire footprint, non-uniform contact
area, and shear stress components (Siddharthan et al., 1998). A tire footprint consists of many
small surfaces contacting the pavement separated by ribs that may not make contact with pavement
and thus may not contribute to loading. Defining a tire footprint that simulates a real tire-pavement
interaction is possible using the FE modeling. Tielking and Roberts (1987) used the ILLIPAVE
finite element pavement program to model non-uniform contact pressures of a tire moving on an
asphalt pavement surface. Their tire contact pressure model took into account normal pressure,

transverse shear pressure, and longitudinal shear pressure. Their results showed that non-uniform
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contact pressure induced greater tensile strain at the bottom of the asphalt layer compared to

uniform loading.

Table 1. Prony Series Coefficients

gi ki T
0.000367 0.000367 1.00E-13
0.000262342 0.000262342 6.49E-13
0.000678368 0.000678368 4.22E-12
0.00108393 0.00108393 2.74E-11
0.00194552 0.00194552 1.78E-10
0.00338058 0.00338058 1.15E-09
0.00591073 0.00591073 7.50E-09
0.0102785 0.0102785 4.87E-08
0.0177787 0.0177787 3.16E-07
0.0304279 0.0304279 2.05E-06
0.0511115 0.0511115 1.33E-05
0.0829927 0.0829927 8.66E-05
0.126665 0.126665 0.000562
0.172722 0.172722 0.003652
0.193456 0.193456 0.023714
0.159339 0.159339 0.153993
0.0891806 0.0891806 1
0.0349519 0.0349519 6.49382
0.0112675 0.0112675 42.1697
0.00355265 0.00355265 273.842
0.00124161 0.00124161 1778.28
0.000492694 0.000492694 11547.8
0.000222137 0.000222137 74989.4
0.000108642 0.000108642 486968
5.68027e-05 5.68027e-05 3.16E+06
3.06136e-05 3.06136e-05 2.05E+07
1.69927e-05 1.69927e-05 1.33E+08
9.44883e-06 9.44883e-06 8.66E+08
5.45866€e-06 5.45866e-06 5.62E+09
2.83722¢-06 2.83722¢-06 3.65E+10
2.16651e-06 2.16651e-06 2.37E+11
1.00153e-07 1.00153e-07 1.54E+12
1.83335e-06 1.83335e-06 1.00E+13
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Table 2.Material properties

Layer  Modulus(MPa) Poisson’s ratio  Density (Kg/m®) Damping (%)

HMA 9548 0.35 2325 -
Base 193 0.3 2000 5
Subgrade 43 0.4 1500 5

However, simplifying the contact area can affect the pavement strain response since the
distribution of the stress field in the contact zone can affect the pavement response (Tielking and
Roberts, 1987; Wang and Machemehl, 2006; Yue and Svec, 1995). Tire pressure and load intensity
affect contact pressure distribution (Tielking and Roberts, 1987; Alkasawneh et al., 2008; Mun et
al., 2006; Weissman, 1999; Perret and Dumont, 2004). In the multilayered elastic theory, the shape
of the tire footprint is assumed to have a circular shape as it conserves the property of an
axisymmetric problem. Wang and Machemehl (2006) showed that the assumption of a uniform
circular tire-pavement pressure area can underestimate the vertical compressive e strains at the top
of the subgrade and overestimate the tensile strains at the bottom of the AC layer. In most of the
3D FE modeling of pavement, the contact area between a tire and the pavement surface is

approximated as a rectangle with two semi-circles as shown in Fig.5.

3L
IO.GL

04L

v

Figure 5. Tire contact area

In this work, the contact area was assumed to be rectangular. The obtained contact area was
transformed to a simple rectangle with the same width 0.6 L. The area of the contact area shown
in Fig. 5 is equal to:

A, =04LX06L+2x ("“’T“)z) — 0.5227 I2 (20)
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Therefore, if a denotes the length of the equivalent rectangle, the area of the equivalent rectangle

(Fig.6) is:
A.=a x0.6 L= 05227 L?

0.5227 L?

which gives: a = =0.8712 L

A
v

0.8712 L

Figure 6. Approximated rectangular loading

The area of the contact area used in this work is Ac = 0.0260 m?. Therefore L is given by:

L:\/ Ac =\/°'°260 —0.2230m

0.5227 0.5227

Thus, the dimensions of the rectangle are: 0.8712 L =0.1943 mand 0.6 L =0.1338 m.

2.4.2. Contact Pressure

(21)

(22)

The loading of the pavement occurred in the center strip of the section. Fig. 7 highlights the loaded

strip. In order to simulate the movement of the load at the desired speed, a user defined DLOAD

subroutine was developed using FORTRAN. In fact, regular loading functions in ABAQUS do not

allow varying the location of the applied load as a function of time. In order to overcome this

problem, different approaches were proposed. The load and its amplitude can be shifted over the

loading path at each step until a single wheel pass is completed (Al-Qadi and Wang, 2010; Alavi
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et al., 2016a). This approach is time consuming as it needs the definition of the footprint areas for
each step. However, the DLOAD subroutine can be used to define the variation of the distributed
load magnitude as function of the position, time, element number and load integration point
number (ABAQUS, 2010).
The script specifies the center of the rectangular loading area and its dimensions, the initial and
final position of the truck, the truck speed and the tire pressure. A highway speed of 67 mph (30
m/s) was inputted to the FORTRAN code and a tire pressure of 862 kPa was applied. The location
of the center of the contact area was calculated by the DLOAD subroutine in each time step as
follows:
X=v, Xt+ Xxg (23)
y=v, Xt+ ¥ (24)
where vy, vy, xo and y, are the speed in x direction, the speed in the y direction, the x-coordinate
of the initial location of the tire center and the y-coordinate of the initial location of the tire center.

The vehicle speed was kept constant.

Figure 7. Loaded strip of the AC pavement section
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In this work, the loading was assumed to follow the x-axis, therefore, v, was set to zero. The chosen
length of the vehicle path is 3 m. As the selected time step of the dynamic analysis was 0.001
second, the tire progresses by:

AXtime—step = v At =30 % 0.001 = 0.03 m = 30 mm (25)
As the size of the element around the loading path is 20mm x 20mm, only one element was loaded

in each time step.

2.5. Crack Modeling

Many recent studies on flexible pavement fatigue have been conducted using the FE softwares
such as Abaqus and FEP++ (Huang et al., 2011; Mun et al., 2006, Sarkar, 2015, Shafabakhsh et
al., 2015; Dave and Buttlar, 2010). These programs allow the user to define various complex
parameters such as the viscoelastic properties of asphalt. A limitation of using the FE programs
for the asphalt pavement analysis pertains to the definition of highly complex scenarios such as
fatigue cracking. Fatigue cracking can begin as either a bottom-up crack, top-down crack, or a
combination of the two. After repeated loading of the asphalt pavement, crack propagation and
additional crack growth further weaken the pavement. These cracks that begin at one end can either
continue growing through the thickness of the pavement or coalesce with a different crack growing
in another direction. Modeling fatigue cracking inadequately can result in overestimation of fatigue
life (Mun et al., 2006). Major factors affecting fatigue cracking are asphalt properties, asphalt
thickness, and tire pressure among others. Generally, top-down cracking increases in thicker
asphalt, stiffer asphalt, less stiff base and/or subgrade, and under non-uniform loading (Mun et al.,

2006).
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ABAQUS allows the user to define certain properties by a user subroutine (ABAQUS, 2010).
Detailed crack modeling is typically defined using a user subroutine in order to realize more
realistic results due to limitations in the basic modeling methods. Cracks defined in ABAQUS
using basic modeling for asphalt pavement yield inaccurate results due to over simplification of
the crack. Modeling a crack in ABAQUS can be done using extended finite element method
(XFEM). Two major limitations that deter XFEM usage in the fatigue cracking pavement analysis
are that the method is only viable in static cases and there is no crack growth. Creating a user
subroutine to accurately model fatigue cracking in asphalt has yet to be accomplished. Song et al.
(2006) have developed a user subroutine of a cohesive fracture model that successfully replicated
cracking in asphalt concrete. Dave and Buttlar (2010) have successfully modeled thermal reflective
cracking using a user-defined bilinear cohesive crack model. A crack can also be introduced using
Element Weakening Method (EWM). Mishnaevsky Jr. (2004) has used this method to simulate
the reduced properties resulting from cracking of particle reinforced composites.

In this work, the EWM was also used to introduce the damage to the pavement. Different scenarios
were defined based on both the weakening state of the elements defining the damage zone and its
height. On this basis, the element elastic modulus was reduced to a certain value in order to define
a damage zone. A total of 13 damage states were studied which include 4 different cases of
modulus reduction, each having three varying damage zone heights. A damage squared area of
120 mm x 120 mm (6 x 6 elements) was created at the bottom center of the HMA layer. The
modulus of this area was reduced 30%, 50%, 70%, and 90% from the instantaneous modulus of
the HMA layer. The damage zone heights were 20 mm, 40 mm, and 60 mm. Fig. 8 shows the
damage location, cross section, and the measurement locations.

The defined damage states are as given below:

26



Intact: Corresponding to the intact configuration,

D20W30: The damage zone height is 20 mm and the modulus is reduced to 30 % of its
initial value,

D20W50: The damage zone height is 20 mm and the modulus is reduced to 50 % of its
initial value,

D20W?70: The damage zone height is 20 mm and the modulus is reduced to 70 % of its
initial value,

D20W90: The damage zone height is 20 mm and the modulus is reduced to 90 % of its
initial value,

D40W30: The damage zone height is 40 mm and the modulus is reduced to 30 % of its
initial value,

D40WS50: The damage zone height is 40 mm and the modulus is reduced to 50 % of its
initial value,

D40W70: The damage zone height is 40 mm and the modulus is reduced to 70 % of its
initial value,

D40W90: The damage zone height is 40 mm and the modulus is reduced to 90 % of its
initial value,

D60W30: The damage zone height is 60 mm and the modulus is reduced to 30 % of its
initial value,

D60W50: The damage zone height is 60 mm and the modulus is reduced to 50 % of its
initial value,

D60W?70: The damage zone height is 60 mm and the modulus is reduced to 70 % of its

initial value,
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e D60W90: The damage zone height is 60 mm and the modulus is reduced to 90 % of its

initial value.

Sensing location  pamage zone

AC layer %WW$ Damage height

Base

120 mm

o
o
A

=5
%
3535
ete!
3535
3535
3535

o
o
o
o
o
o

SRRRRELL
SIS

O,

Subgrade

(a) (b)

Figure 8. (a) Cross section of the damage (b) Crack zone and measurement location

2.6. Sensors Location

Four rows of eights surface elements, representing sensors, were placed running longitudinally
along one side of the pavement section. Each row of sensor elements was offset from the next row
in the transverse direction by 60 mm. Sensor 1 was placed in the center of the pavement section
and sensors were spaced at 200 mm from one another in the direction of tire loading. Figs 9-11
show the sensor locations. Sensor elements at 0 mm and 60 mm offset have matching element
dimensions. Meshing becomes coarser farther away from the tire load path. Thus, sensor elements
at 120 mm and 180 mm offset have large, rectangular dimensions when compared with the sensor
elements closer to the center load path. Each of the sensor element rows were saved as element
sets and assigned to save values of longitudinal strain (E11), transverse strain (E22), and 3D

principal strain (EP1, EP2, EP3).
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Sensor 8

Sensor 1

Figure 9. Sensors at 60mm Offset from Center.

Figure 10. Sensors at 120 mm Offset from Center.

Sensor 8 Sensor 1

Figure 11. Sensors at 180 mm Offset from Center
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Fig. 12 shows the location of the data acquisition nodes on the surface of the AC layer. A set of
32 elements were selected as the sensing nodes. The set was divided into 4 groups (Fig. 9). Each

group contained 8 sensing nodes.

/ @ 6 ¢ 6 o & o o
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Traffic direction e O O ©o o O
SL s2 S3 sS4 S5 S6 ST S8
<>
200 mm

Top surface of the AC Layer

Figure 12. Sensors locations

In each set, the first sensors was located at y = 0 and the distance between two consecutive elements
was 200 mm. The transversal distance between two sets was 60 mm. Therefore, the offset of the
sets from the center of the pavement (y = 0) was considered as follows:

e Setl:y=0

e Set2:y=60mm

e Set3:y=120mm

e Set4:y=180mm
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The longitudinal, transverse and principal strains (&;,&,,&3) for each of the predefined damage

cases were subsequently extracted.

2.7. The FE Results

2.7.1 Intact Simulations

Figs. 13-15 show the time-history response of the transverse strain for the four rows of sensors in
the Intact case. All sensors display equivalent amplitudes corresponding to their distance from the
center in the transverse direction (y axis). Sensors located closest to the tire load show higher
transverse strain compression peaks. Strain response of Figs. 13 and 14 does not exhibit a similar
behavior to the strain response of Figs.16. This is due to the larger element dimensions and
rectangular shape of the sensor elements. As a result, strain values from sensor elements located
120 mm and 180 mm away from the center of the pavement in the transverse direction were not
investigated further. Furthermore, particular attention was given toward areas exhibiting high

strain.

Intact, Middle Sensors, E22

V / a \; J’

" ;7 *‘ l'-\ 4’,‘

Y Savd

2 k\ 5\ l‘!; ‘\

L s

Figure 13. Intact, Middle Figure 14. Intact, 60 mm Sensors,
Sensors, E22 E22
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Intact, 180 mm Sensors, E22

Strain

Figure 15. Intact, 180 mm Sensors, E22
2.7.2. Reduced Modulus: 30%

Figs. 16-18 show the transverse strain response of the sensor elements located along the
center of the pavement for the 20 mm, 40 mm, and 60 mm damage modes in the 30% reduced
modulus case. The sensor element closest to the damage has a much larger variation in strain
response than the seven other sensor elements. Compressive transverse strain near the damage

zone increases as damage size increases.

4 30% Reduced Modulus, 20 mm Damage, Middle Sensors, E22
05 T T T T T T T

Strain

5 L L !
[i] (i} 0.02 0.03 0.04 0.05 0.06 0.07 0.08 00 01
Time (seconds)

Figure 16. 30% Reduced Modulus, 20 mm Damage, Middle Sensors, E22.
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Figure 17. 30% Reduced Modulus, 40 mm Damage, Middle Sensors, E22.

Figs. 19-21 show the transverse strain response of the sensor elements located 60 mm offset
from the center of the pavement for the 20 mm, 40 mm, and 60 mm damage modes in the 30%
reduced modulus case. Again, the sensor element closest to the damage has a much larger variation
in strain response than the seven other sensor elements. Compressive transverse strain near the

damage zone decreases as damage size increases.

30% Reduced Modulus, 60 mm Damage, Middle Sensors, E22
T T T T T T
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Figure 18. 30% Reduced Modulus, 60 mm Damage, Middle Sensors, E22.
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30% Reduced Modulus, 20 mm Damage, 60 mm Sensors, E22
T T T T T T

Strain

L L I I | I L
0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 008 01
Time (seconds)

Figure 19. 30% Reduced Modulus, 20 mm Damage, 60 mm Sensors, E22.

Figs. 22-25 show the two sensor elements closest to the damage zone. Sensor 1 in both the
Middle location and 60 mm offset location display the most significant variation in transverse
strain as damage length progresses. In the Middle location, Sensor 1 exhibits an increase in the
compressive transverse strain as damage length increases. There is small variation in the strain for
all damage modes in Sensor 2. In the 60 mm offset location, Sensor 1 shows a decrease in the

compressive transverse strain as damage length increases. Sensor 2 displays small variation in

strain for all damage modes.
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Figure 20. 30% Reduced Modulus, 40 mm Damage, 60 mm Sensors, E22.
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30% Reduced Modulus, 60 mm Damage, 60 mm Sensors, E22
T T T T T T T

Strain

L L 1
o om 0.0z 0.03 0.04

005

Time (seconds)

0.06

1
007 o8 ooe 01

Figure 21. 30% Reduced Modulus, 60 mm Damage, 60 mm Sensors, E22.
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2.7.3. Reduced Modulus: 50%
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Figure 26. 50% Reduced Modulus,
Middle Sensor 1, E22
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Figure 28. 50% Reduced Modulus, 60
mm Sensor 1, E22
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2.7.4. Reduced Modulus: 70%
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Figure 30. 70% Reduced Modulus,
Middle Sensor 1, E22
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Figure 32. 70% Reduced Modulus, 60
mm Sensor 1, E22

Figure 33. 70% Reduced Modulus, 60
mm Sensor 2, E22
2.7.5. Reduced Modulus: 90%
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Figure 34. 90% Reduced Modulus,
Middle Sensor 1, E22

Figure 35. 90% Reduced Modulus,
Middle Sensor 2, E22
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Figure 36. 90% Reduced Modulus, 60 Figure 37. 90% Reduced Modulus, 60
mm Sensor 1, E22 mm Sensor 2, E22

2.7.6. Maximum Strain vs Damage Mode

Results point toward a focus on the sensor elements closest to the damage zone. To this
end, the following results highlight the differences in maximum strain values at the four sensor
elements located closest to damage. Fig. 38 places a box around the location of the four sensor

elements.
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Figure 38. Four Sensor Elements.
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Figure 39. 20mm Damage: Maximum Strain vs Location.
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Figure 40. 40mm Damage: Maximum Strain vs Location.
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Figure 41. 60mm Damage: Maximum Strain vs Location.
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Fig. 42 shows the time history of the first principal strains (in absolute value) for different sensors
and for the intact, D20W90, D40W90 and D60W90 damage states. As it seen, for sensor S1, which
is located above the damage zone, the amplitude of the strains is much higher than the other
sensors. Moreover, as the damage progresses from the intact to the 60 mm damage height, the
amplitude of the first principal strains increases as well. The difference of the amplitudes between

the Intact and the D60W90 damage state is 111.7 ue.
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Figure 42. Strain history of sensor S1 for different damage states

Fig. 43 displays the results for sensor S2. Evidently, the difference of the maximum principle
strains is being reduced comparing to sensor S1 as the sensor is located at a 200 mm offset from
the center of the damage zone. Fig. 44 shows a closer view of the peak values for sensor S2. Fig.
45 displays the results for sensor S17 which is located at x = 0 and at y = 120 mm. As it seen, the
amplitude of the strain is changing between damage states but it does not have an increasing trend
as for sensors S1 and S2 (Fig. 46). However, for sensor S18 which has a 120 mm offset from the
x-axis and 200 mm offset from the y-axis, the strain amplitude continuously increases as the
damage progresses (Fig.47). Based on the results, it can be concluded that the amplitude of the
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strains is affected by the damage states as well as the location of the sensor with respect to the

damage.
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Figure 43. Strain history of sensor S2 for different damage states
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Figure 44. Zooming around the peak values for sensor S2
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Figure 45. Strain history of sensor S17 for different damage states
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Figure 46. Zooming around the peak values for sensor S17
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Figure 47. Zooming around the peak values for sensor S18

Fig. 48 and 49 present the variation of the maximum first principal strain (in absolute value) with

respect to the percentage of modulus reduction for different damage heights. As seen in these

figures, the amplitude of the strain depends on the offset of the sensor with respect to the damage
zone. In fact, for a fixed reduction in the asphalt modulus, the strain amplitude increases for sensors
S1and S2 but the behavior changes when the sensors is located at a certain offset from the damage
center. Furthermore, as it is illustrated by sensor S17, for a fixed damage height, the strain increases
with the percentage of modulus reduction for the case of 20 mm but it has a decreasing trend for
the two other damage lengths (40 mm and 60 mm). However, when the sensors are located along
the wheel path, a unique trend was observed. In this case, the amplitude of the first principal strain

increases with the damage height and the percentage of modulus reduction.

45



340 T T T T T T T T
—#— 20 mm damage
—H8— 40 mm damage
320f | —— 60 mm damage b
300 1
w
=
s 2801 i
1
(]
=
260} +
240 4
220 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Percentage of Modulus Reduction (%)
Sensor S1
2325

—*— 20 mm damage
232[ | —a—40mm damage
—&— 60 mm damage

2315F

Max(le, 1)(ne)

275 , , , , , , , ,
0 10 20 30 40 50 60 70 80 90
Percentage of Modulus Reduction (%)
Sensor S2
Figure 48. Variation of the Maximum principal strains with the damage state for Sensors 1
and 2

46



126

—#— 20 mm damage
—8— 40 mm damage
—©— 60 mm damage

1255}

Max(je, [)( pe)

122 L L L L
(0] 20 40 60 80 100
Percentage of Modulus Reduction (%)
Sensor S17
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3. The Proposed Damage Detection Approach

The damage detection approach proposed in this work was divided into three stages. The first step
was focused on generating the sensor output based on the time history of the first principal strain
obtained on the previous section. Thereafter, a feature transformation method was applied to the
original set of data find a reasonable relationship between the damage progression and the data of
the network of sensors. Finally, a PNN classifier was used to classify the pre-defined damage

classes.

3.1. Working Principle

The new class of floating-gates sensors is mainly based on the strain-energy harvested from the
structure under excitation by a piezoelectric transducer. The sensors have 7 memory cells that
cumulatively store the droppage in strain at a predefined threshold level. Each cell has a specific
threshold level and injection rate. When the amplitude of the strain at the sensor location exceeds

the threshold level of a specific gate, it starts recording the cumulative strain droppage. The
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injection rate is defined as the quantity of droppage in strains in 1 second at a specific memory
gates.

Fig. 50 displays the procedure of obtaining the strain droppage (¢y — &sensor) at the sensor level.
As it seen from the figure, the sensor strain droppage is in the form of a histogram that have
different amplitude for each gate. In fact, each memory cell has an initial strain value g,. After
applying a certain number of loading cycles, the initial strain decreases linearly with the number

of cycles. Furthermore, the strain value &g, at each gate could be written as:
Esensor = €0 — Igi Zk Atgl (26)
where Iy; is the strain injection rate and At;fi is the k™ time intersection interval at gate gi. In this

case, the shape of the histogram is random and will not follow a specific trend. The injection rates

play a very important role in defining the sensor output.
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Figure 50. Procedure of obtaining the strain droppage

For the analysis, the initial strain value in each memory was set to 500 pe. The gate injection rates
as well as the strain threshold levels are displayed in Table 3. The selection of the thresholds and

number of gates was based on the injection rates of the existing sensors. The activation strain of
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the sensor is 80 ue below which the device does not record any information. The maximum
threshold is 200 pue.

Table 3. The preselected strain levels and the gate injection rates considered for the
analysis

Strain threshold Injection
Gate number
level (ue) Rates (ue/s)

1 80 0.001000
2 100 0.005710
3 120 0.023162
4 140 0.027822
5 160 0.006562
6 180 0.005989
7 200 0.032792

Fig. 51 presents the variation of the sensor strain at each gate versus the number of applied cycles
for the intact pavement and a typical damage state. For brevity, only the results pertaining to the

intact and D60W90 modes were compared for sensor S1.
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Figure 51. Strain change across sensor S1 gates

As it is seen in Fig.51, the strain varies linearly as a function of the number of cycles. In addition,
the slopes of the lines corresponding to the damaged pavement are higher (in absolute value) than
the intact phase. This can be explained by the fact that the amplitude of strain continuously
increases at location of sensor S1 with respect to the damage progression. Thereafter, the
cumulative time intersection increases with an increase in the strain amplitude. Although it can be
seen that the output of the sensor changes with damage progression, there is a considerable loss of
information. In fact, the sensor does not provide information about the strain distribution
histograms induced by service loads which makes the task of interpreting the sensor data a
challenging problem.

Alavi et al. (2016a,b,c) showed that the cumulative time histogram can be characterized by a
Gaussian cumulative density function (CDF). A CDF is fully defined by only two parameters: the
mean and the standard deviation of the distribution. These parameters were shown to be good

indicators for damage detection (Alavi et al.2016a). On the other hand, when the gates have
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variable injection rates, the CDF fit will not work. Accordingly, in this work, a Gaussian mixture
model (GMM) was proposed to fit the cumulative droppage of the strain at the sensing nodes. The
GMMs are very powerful tools to adequately describe many types of data. In fact, certain models
exhibits a multimodality that are poorly describes by a single Gaussian distribution. In the case of
different injection rates, the output histogram is expected to have different rate of variation
resulting in multiple maxima. Therefore, a multi-modal Gaussian mixture model can be a good fit
for the data. The probability density function (PDF) of a GM distribution is given by the following

expression:

P00 = Ty exp| -2 (22)] @)

where: u,., o, (k = 1.. M) are mixture component parameters (mean and standard deviation) and
c; ae the mixture weights. The mixture weights of the PDF should satisfy the following condition:
Yheic =1 (28)

The strain droppage histogram was fitted by a bimodal GMM as follows:

2e(9) = (s Be) Thor oy exp -2 (4222) | 29)

2mwog?

where g is the gate number, (uy, oy,) are the mixture components parameters, a;, is a parameter
that represents the mixture weights and Ag; is the cumulative droppage in strain at gate number i.
Eq. (29) has 6 parameters to estimate: (uy, oy, @), k=1,2. These parameters were obtained based
on the 7 values of each gate of the sensor. Fig. 20 displays the obtained GMM fit of the data at
sensor S1.

1 million traffic cycle was applied to the pavement in order to get a significant droppage of the
sensor output data. It is important to mention that the injection rates could be modified using an

additional resistance in parallel with the internal resistance of the sensor. Therefore, for a fatigue
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analysis, the impedance of the sensor should be increased in order to lower the gates injection

rates.

Sensor 1

I Data
—— GMM fit

Gate Number

Figure 52. The GMM fit to the sensor data

As seen in Fig. 52, the output histogram presents 2 peaks corresponding to the first two maximum
strain drops. It is important to mention that the maximum values do not only correspond to the gate
with the highest injection rate, but it is also related to the threshold levels, the number of cycles
and the strain rate variation. Fig. 53 displays the results of the GMM for different sensors. The
GMM curves were plotted for the intact configurations and for D60W90 damage state. Based on
the results, the GM distribution deviates from one damage states to another. According to section
3.8, the amplitude of the strain changes with damage. As a result, the cumulative time intersection
changes as well and affects the variation of the strain at the sensor level.

For sensor S1, the mean (u,) of the first components of the GM shifts to the left (deceases) and
the second mean u, shifts to the right (increases). In addition, the standard deviations a; and o,
increase with damage progression as the distribution expands. Furthermore, when the sensor is
located far from the damage zone, the variation of the GMM parameters becomes less significant

as indicated by sensors S2 and S3.
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An interesting observation from the output of sensor S9 is located at a 120 mm offset from the
center of the pavement is thata, shows a significant variation between the intact and the damaged
configurations. At the location of sensor S9, the maximum strain obtained by the FE model was
below 180 ue for the intact configuration. Therefore, gates 6 and 7 were still inactive and they did
not record any data. When the damage reaches the D60W90 damage state, the maximum strain
increased to 210.94ue which is above the maximum threshold level of all the gates. Thus, all the
gates become active. When the output of sensor S9 is fitted by the GMM, the intact configuration
presents a very small o, and a mean u, below 6 in order to satisfy the zero strain condition
described before. However, when the all the gates become active at the the last damage state
(D60W90), the standard deviation of the second mixture component increases to 1.34 which is
more than 16 times higher than o, of the intact configuration. This considerably affects the width
of the distribution.
For sensor S17, the amplitude of the strains was below 140 ue for both of the intact and the
damaged configurations. Therefore, only the first 3 gates were active. On the other hand, all the
sensors located at 180 mm offset, the strain amplitude is lower than the minimum threshold of the
sensor. Thus, all the gates of these sensors remained inactive.
Based on the results, the bimodal GM parameters change due to the damage progression in the
structure. Thus, the damage could be defined as function of these parameters as follows:
Damage = function (uq, 01, Uz, 02) (28)
However, the changes of the GM parameters are not always consistent. For example, for sensor
S1, u, and , o; decrease and the second components (u,, 0,) increase when damage progresses
from the intact to D60W90 mode. For sensor S17, u; and u, increase and o, and o, decrease.

Thus, it can be concluded that u,, o4, 4, damage, and a,are good damage indicators but cannot be
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individually used for classifying the damage state. To deal with this issue, a pattern recognition

approach was developed to precisely detect the damage progression.

4. Damage classification

4.1. Probabilistic Neural Network

Computational intelligence (CI) includes a set of nature-inspired approaches can determine the
model structure by automatically learning from data. CI provides alternative solutions to overcome
the limitations of the traditional mathematical modeling (Alavi et al., 2016b). These limitations
might be associated with the uncertainties during the process, the complexity or the stochastic
nature of the process. Among different CI techniques, artificial neural network (ANNS), support
vector machines (SVM) and fuzzy inference system (FIS) have been widely used in the field of
damage detection (Szewezyk and Hajela 1994; Wu et al. 1992; Masri et al. 1993; Elkordy et al.
1993; Zhao et al. 1998). Major drawbacks of the widely-used ANNSs are its ‘black box’ nature, the
proneness to overfitting, and the time-consuming iterative procedure required during training of
the network to obtain the optimal learning parameters (Yan and Miyamoto, 2003). To overcome
such limitations, PNN has been proposed by Specht (1990). One advantage of PNNSs is that it does
not have a separate training phase which makes the execution faster than the conventional neural
networks.

PNN is derived from standard Bayes classification and classical estimators for PDF. It is
commonly used for pattern classification and recognition problems (Goh, 2002, Yan and
Miyamoto, 2003,Adeli and Panakkat 2009). PNN uses the non-parametric density estimation
scheme for density estimation based on the Parzen window technique. The Bayes formula can be

expressed as follows:
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P(a)j I1X) = p(xle)P(a)j) (29)
p(X)

where P(w;|x)is the posterior probability, P(w;) is the prior probability and P(x|w;) is the
likelihood of w; with respect to x. The Bayes decision rule is based on the maximization of the
posterior probability. As the evidence p(x) is independent of the class label, then the decision rule
can be determined by estimating the likelihood probability for each class and priors.

The prior probabilities P(w;) can be calculated based on training dat. Thus, the only remaining
unknown in the Bayes formula is the posterior probability. This class conditional probability could
be estimated using the non-parametric density estimation scheme via the Parzen windows
approach. More details about PNN can be found in (Duda, Hart, and Stork 2000, Cristopher and
Bishop, 2006). Assuming we have N training samples, {xa,...,xn},divided into c classes, each of
which d dimensional, and the h is the length of side of hypercube, the estimation of density at a

point xin the d dimensional space is:

P = 2k (30)

= he
In Eq. (30), k((x — x,,)/h) is the kernel function that is used to count the number of patterns
located inside the volume of the hypercube of volume V = h¢,

Similarly, the class conditional density of x given w;can be calculated as follow:

x—x,];
P(xla) = 20 k (S22) (31)
When a Gaussian as kernel function is used, the final estimation becomes:

oY i
o2

P(x|w;) = —Zn o )dexp( ) (32)

The precedent expression can be written as follow:
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where N; is the number of training patterns of class wj,o is called the smoothing parameter that

describes the spead of the Gaussian window function, and x,{ is the n' pattern belonging to class
w;. The feature vectors xn represent the center of the Gaussian window. The smoothing parameter
oneed to be determined experimentally.

A typical PNN with a 4-layer architecture is shown in Fig. 54. The network is constructed by the
following layers: input layer, pattern layer, summation layer, and output layer. The input layer
consists of d input unit, which corresponding to the d features. Each input unit is connected to the
each of the n pattern units (Alavi et al., 2016b). Each pattern unit will apply a dot product with its

weighted vector wyon x, yielding the net activation or simply net:
net, = w, X (34)
The nonlinear function called activation function or transfer function will then transfer the net

activation to the output to summation layer:

netk—y2
actiavtion function=e 7¢ (35)
Notice that the activation function has the same form to the Gaussian kernel:

_ 2 _ _ 2 v _ 2 X —-W
e(netk 1)/ o —e (x'x+wiw, —2wix) /2o —e x—w ) ' (x=w )/ 20 oc k( . k) (36)

Each neuron in the summation layer will sum these local estimates the PDFs of a single population.
Thereafter, if the prior probabilities are the same and the cost functions of making an incorrect
decision are the same, for all classes, the decision layer classifies according the Bayes decision

rule as follows:

c(x) = argmax p(x|w;) (37)

j=1.c
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When the priors and the cost functions are different between classes, the classification decision

becomes:
c(x) = atgr;rlax(p(x|wj) P(a)j)Lj (38)
j=1.c

where L is the loss function associated with the misclassification of the input vector. The training
of PNN is very fast, and it guaranteed the convergence to an optimal classifier as the size of training
samples increases. Also, PNN does not have local minima issues. However, one major challenge
is to find the optimal smoothing parameter o. A very small o will produce many empty hypercube
and in overfitting problems. On the other hand, if window width is too large, the PNN classifier
may under-fit the data as it cannot present some important local variation. Therefore, the accuracy
of the PNN classifier is highly dependent on the choice of the smoothing parameter (Alavi et al.,
2016b).
As mentioned before, 32 sensors were defined on the surface of the pavement. However, only 15
sensors were considered in this analysis for the following two reasons:
- The maximum strain at the 180 mm offset set of sensors is below the minimum threshold of
the sensor.
- The difference on the strain peak value for last 3 sensors of each set between two damage
states of each set is very low.
Therefore, only sensors S1, S2, S3, S4, S5, S9, S10, S11, S12, S13, S17, S18, S19, S20, and S21

were used in the analysis.
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Figure 54. A typical architecture of PNN

Furthermore, the damage states were divided into 4 general classes as follows:
wy: Intact structure
w,: D20W30, D20W50, D20W70, D20W90
w3: D40W30, D40W50, D40W70, D40W90
w,: D60W30, D60W50, D60W70, D60W9I0
Each sensor represents a pattern for the classifier, therefore the total number of data is: 15 x 13 =

195. The performance of the developed models was measured using Detection Rate (DR):

Number of Patterns Correctly Classified
DR = f y Classy (39)

Total Number of Patterns

4.2. Performance of the Initial Features
The initial feature vectors were defined based on the GMM parameters (u,, a4, 45, and a,). These

parameters were used to characterize the initial input vector x as follows:
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X = [951952953954]T (40)

where:
X1 HUq
X2 = 0f 41
X3 = Uz (41)
X4 = 022

As indicated by Eq. (40), the initial problem has 4 dimensions. Thus, 195 4-dimenstional patterns
were used for the classification. The total number of data was divided into 3 sets:

- 70 % training = 137 data sets

- 15 % validation = 29 data sets

- 15 % testing = 29 data sets
As one would expect, these 4 initial features provided very low accuracy on the validation and
testing data. The maximum detection rates for the validation and testing data were 27.58% and
13.79%, respectively. Fig. 55 displays the results of the classification in the validation set as a
function of the PNN smoothing parameter (opyy). Multiple iterations were performed by varying
the smoothing parameter in order to find the optimal value that gives the best accuracy on the
training and validation sets. The best configuration was then applied to un-seen testing data. As
seen in Fig. 23, the best detection rate was obtained when the optimal smoothing parameter is
between 1 and 10. Hence, the optimum value of apy IS equal to 1.
Later, a Principal Component Analysis (PCA) was performed on the initial set of patterns in order
to visualize the data along its first two principal components. This method can reduce a high-
dimensional space to a lower-dimensional space that optimally describes the highest variance of

the data.
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Fig. 56 displays the original input data x project on the two first principal components. The
obtained eigen values of the covariance matrix are: A, = 152.49, 4, = 1.61, 1; = 0.02, 1, =
1.57E — 04. Hence, the first two components represent 99.99 % of the data. The detection
accuracy using the reduced feature vector: x’ = [x;x,]" was increased from 13.79 % to 34.48 %
for the testing data. Furthermore, as seen in Fig. 56, the defined 4 damage classes overlap

intensively which results in low detection accuracy.
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4.3. Data Fusion Model

4.3.1. Feature Transformation

According to the preliminary results, the initial input feature vector x does did not contain enough
information to separate classes. Hence, a new strategy was defined to improve the damage
detection performance. On its basis, it was decided to fuse both the information provided by one
sensor and all the information supplied by the other sensors in that specific sensor layout. This
approach is also known as the’ group effect’ of sensors (Alavi et al. 2016a,b,c). In this case, even
if one sensor does not sense the damage, the group effect (sensor network) will help detect the

damage classes. Fig. 57 summarizes the proposed method for the data fusion model.

o D D

Data Fusion Model
Feature transformation function ¢

6

Figure 57. Data fusion model

The proposed feature transformation ¢ could be written as follows:

4 feature transformation Rlo

@:R

@
x = [x1%,] - Y= [Y1Y2Y3Y4Y5Y6Y7Y8 Yool (42)



The new set of input parameters were introduced to the formulation of the damage state as follows:

X1~ X1ave
( Vi=——
X1STD
X2 X2ave
Vo=——
X2STD
X3 X3ave
V3 =——
X3STD
X4~ Xagye
Vo =—
X4sTD
ys = ¥17X1sTD
_ > X1ave
Y= ) Ve = X2~X2sTD (43)
6 X2ave
X37X35TD
Vo =—
X3ave
X4—X45TD
Vg =
X4ave
y — ('x1+x3)_(xZave+x4ave)
9 =
X1aveTX3ave
y (24 x4)—(X1,ye T X3,ve)
10 —
k X2avetXaave

where,
- x;: The i feature of the initial feature vector,

Xi.ve- 1Heaverage of x; for all patterns corresponding to a specific damage state,

Xisrp- T1he standard deviation of x; for all patterns corresponding to a specific damage
state.

The new defined features yi (i=1..10) were derived from the conventional z-score functions. In

fact, features y; to y,are the z-score functions and features y: to y,, are functions that are inspired

by the form of the conventional z-score function. All the y;(i=1..10) were based on the average

and the standard deviation of all patterns for a specific damage state.

4.3.2. Feature Selection
The new features were expected to increase the ‘distance’ between classes especially between two

consecutive damage states. The word distance here refers to Euclidian distance between two
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features in the d-dimensional space belonging to two different classes. Furthermore, by increasing
the dimensionality of the problem from 4 to 10, the accuracy is more likely to increase. However,
increasing the number of features may also lead on the curse of dimensionality. Therefore, different
feature selection methods were used to tackle this problem. In this work, sequential forward
selection (SFS), sequential backward selection (SBS) and exhaustive search (brute-force)
algorithms were used to select the best set of features (Aha and Bankert, 1995; Zongker and Jain,
1996; Weston et al., 2000; MathWorks, 2016).

SFS:

SFS sequentially add the best feature y* that maximizes the objective function J/(Z + y*). The
SFS algorithm works as follows (MathWorks, 2016):

1. Start with the empty set Zo = {7}

2. Select the next best feature: y* = argmax(J(Z;, + x))
XEZy

3. Update Zk+1=Zk+ 1" A= £+ 1
Goto?2
Table 4 displays the sets selected by the SFS algorithm and their performances for each step. The

best accuracy on the training, validation and testing data was obtained using the feature vectors Zs

or Zg selected as follows:

Zg =1{Y9, Y1, Y2 Y3, Y4, V5, Y6 Y7} (44)

Zg = {¥9,Y1, Y2, Y3, Y1, Y5, Y6r V7, Y } (45)

The detection rate accuracy using the feature vectors Zs or Zg was 100%, 96.55% and 93.10% for
the training, validation and testing data, respectively. The optimal smoothing parameter was

obtained for each iteration of the algorithm.
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Table 4. Features selected by SFS and their corresponding detection rates

Set Features Training Validation Testing
Number Accuracy (%) | Accuracy (%) | Accuracy (%)
1 {yo} 94.89 89.65 89.65
2 {y9, 1} 100 89.65 93.10
3 {Vo, ¥1,¥2} 100 79.31 93.10
4 {9, 1, ¥2,¥3} 100 79.31 93.10
5 Vo, Y1, Y2, V3, Ya} 100 79.31 93.10
6 V9, V1, Y2, V3, Var Ya } 100 82.75 93.10
! o, ¥1,¥2, Y3, Y4, Y4, 5} 100 82.75 93.10
8 o y1, Y2, Y3, Y4 V5, Ver Y7} 100 96.55 93.10
9 Vo, Y1, Y2, Y3, Y4, V5, Ve, ¥7, Vs } 100 96.55 93.10
10 | {ye,¥1,Y2:¥3, Y4 Y5, Ye: ¥7, Y8, Y10} 100 96.55 89.65
SBS:

This method sequentially removes the worst feature y~that least reduces the objective function

J(Z — y™) . The SBS algorithm works as follows (MathWorks, 2016):

1. Start with the full set Z, = y,

2. Remove the worst feature: y~ = argmax(J(Z, — x))
XEZy

3. Update Zk+1 = Zk— x—; £= £+ 1.
Goto?2
Table 5 displays the sets selected by the SBS algorithm for each step. The best accuracy on the

training, validation and testing data was obtained using the feature vectors Z1, Z2 or Zs, where:

Z1 =1{Y2,¥3: Y4 V5, Y6r Y7, Y8, Yor Y10}
Zy = {¥3, Y0 Y5 Y6 Y7, Y8r Yor Y10}

Z3 = {¥3: Y0 V5, Y6, Y7, Y8, Yo}
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The best detection accuracy was 100%, 96.55%, 93.10% for the training, validation and testing
data, respectively. Multiple iterations were performed for each iteration to find the optimal
smoothing parameter. Therefore, the optimal set extracted by the SBS algorithm is Z; which has
7 dimensions.

Table 5. Features selected by SBS and their corresponding detection rates

Set Features Training Validation Testing
Number Accuracy (%) | Accuracy (%) | Accuracy (%)
1 192, Y2, Y3 Y4 V5, Yer Y7, Var Yo, Y10} 100 96.55 89.65
2 {2, Y3, Y0 Y5, Y6, Y7, Y8, V9, Y10} 100 96.55 93.10
3 V3, Y4, Y5, Y6 Y7, Y8, Y9, Y10} 100 96.55 93.10
4 {,V3;y4;y5:y6;y7;3/8; y9} 100 96.55 93.10
5 e Vs, Y6, Y7, Ve, Yo} 100 96.55 89.65
6 {Vs, Y6, V7, Vg Yo } 100 96.55 86.20
7 e V7, Vs Vot 100 96.55 86.20
8 {y7, Y8, Vo } 100 96.55 86.20
9 {ys, Yo} 98.54 93.10 86.20
10 {yo} 94.89 89.65 89.65

Exhaustive search:

The main limitation of SFS pertains to the fact that it is unable to remove feature that become
obsolete after the addition of other features. Similarly, SBS cannot reevaluate the usefulness a
removed feature on the selected set (Weston et al., 2000). Both algorithms are suboptimal.
Therefore, an exhaustive search algorithm was performed. It was decided to select the best 3
features that give the best classification accuracy. As the problem has 10 dimensions, the algorithm
performed C3, = 120 iterations in order to find the best set of 3 features. One the best obtained
sets that gives the best accuracy is:

Soptimal = V0, Y7, Yo} (49)
The detection rate for the training, validation and testing data are equal to 100%, 96.55% and
93.10%, respectively. Fig. 58 displays the confusion matrixes. A confusion matrix is a table that
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displays the performance of the classification. The rows represent the predicted class and the
columns represent the actual class. As observed from the confusion matrixes, only 2 patterns were

misclassified in the testing set and 1 pattern in the validation set. The obtained optimal smoothing

parameter was 0.01.

Confusion Matrix Confusion Matrix

Output Class
Output Class

1 2 3 4 1 2 3 4
Target Class Target Class
(a) Training data (b) Validation data

Confusion Matrix

Output Class

1 2 3 4
Target Class

(c) Testing data
Figure 58. Confusion matrixes for the best features selected by the exhaustive search
method
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Figure 59. Accuracy versus smoothing parameter for the validation set using the exhaustive
search method

The new set of features based on the data fusion model has enhanced the performance of the
detection rate from 13.79 % to 93.1 % on the testing set. This new set of predictors was inspired
form the conventional z-score function which is based on the average and standard deviation of a
group (class) of patterns. These parameters describe the mean and the standard deviation of a
certain class. Fig. 60 shows the distribution of the optimal set patterns. As seen in this figure, the

classes are more separable compared to the initial input feature vectors.
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Figure 60. Distribution of the optimal set patterns
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4.4. Uncertainty Analysis

In this work, the sensor data was simulated using the strain history provided by the FE modeling
of the pavement under different damage scenarios. However, different sources of uncertainties can
contribute to the increasing of the error between the FE modeling and the real structural behavior
(Haukaas and Gardoni, 2011). On this basis, an uncertainty analysis can enhance the reliability of
the proposed damage detection approach. To this aim, the input data was polluted using a Gaussian
noise with 5 different levels: 10%, 20%, 30%, 40% and 50%. The best set of predictors Soptimal Was
used in the noise pollution verification phase. Thereafter, the PNN was run for the different noise
levels. For each case, the optimal smoothing parameter was calculated. Table 6 presents the results
of the uncertainty analysis. Fig. 61 displays the detection rate accuracy as a function of the noise
level using the optimal smoothing parameter. As seen in Table 5 and Fig. 61, the performance of
the models remains satisfactory up to a 30% noise level. The detection rates for a noise level below
or equal to 30 % are above 82 % for all of the training, validation and testing sets.

Table 6. The damage detection performance for various noise levels using the optimal set of
features

Damage Detection Performance (%)

Noise Level Optimal smoothing

parameter Training  Validation  Testing
10% 1E-2 100 96.55 89.65
20% 1E-2 100 82.75 86.20
30% 1E-2 100 86.20 86.20
40% 1E-1 87.59 72.41 75.86
50% 1E-2 100 72.41 75.86
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Figure 61. Damage detection accuracy for different noise levels

5. Summary and Conclusions

This work presents a new approach for pavement health monitoring based on a self-powered
surface sensing technology. The self-powered sensors operate by harvesting the strain energy from
the host structure and recording the cumulative droppage of the strain. Each sensor has seven
memory gates for data storage. Each gate has an activation threshold level from which the sensor

start recording the cumulative droppage of the strain. Moreover, each gate has a specific injection
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rate which controls the speed of the variation of the strain (strain droppage) at a specific timeframe.
These injection rates can be modified by adding load resistance on the sensor interface board
depending on the nature of the application. The difference between the previously used sensors is
the variability of the injection rates between the gates which makes the interpretation of the sensor
data more complicated. Therefore, a new strategy was proposed for data fitting and interpretation
of the trends. The main focus is on the detection of bottom up cracking in the AC pavements using
sensors located near the surface of the layer. In particular, such surface sensing technology is
important for the monitoring of existing pavements. In order to verify the performance of the
proposed method, 3D FE models of the pavement structure were created using ABAQUS.
Subsequently, the principal strain time histories were extracted for different sensing nodes on the
surface of the AC layer. The pavement was subjected to a dynamic moving load at highway speed.
The models incorporated the tire-pavement contact stress, a viscoelastic behavior for HMA, an
elastic behavior with damping for base and subgrade, and a continuous moving load. The moving
load was created via a DLOAD subroutine using a FORTRAN code. Thereafter, different damage
scenarios were introduced to the bottom of the AC layer. The damage states were defined based
on the EWM by reducing the material properties of the damaged area. The FE results show that
the strain amplitude changes as a function of the damage state. In addition, the locations of sensors
with respect to the damage control the change in the strain amplitude. The sensor output was
calculated based on the FE strain history. Based on the results, it was found that the damage could
be detected through the strain droppage of the sensor gates. Only the sensors at a specific location
with respect to the damage location were sensitive to the damage progression. To tackle this
problem, two different stages were considered for the performance verification of the proposed

approach. At the first stage, the complicated histogram of sensor data was fitted by a bi-modal GM
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model in order to define initial damage indicators. The results show that the bi-modal GM
parameters are good damage indicators only at specific locations. Thus, a data fusion model was
proposed by defining new descriptive features from the GMM parameters. These new predictors
contained the information supplied by the all the sensors at each specific sensing location.
Thereafter, different feature extraction methods (SFS, SBS, Brute force) were used to check the
curse of dimensionality and to select the optimal set of sensors that give the best accuracy. A PNN
classification scheme was used to classify the predefined damage stages. The results showed that
using the optimal set of predictor features could provide satisfactory detection rate accuracy (100%
on the training data, 96.6% on the validation data and 93.1% on the testing data). Finally, an
uncertainty analysis was performed to simulate the performance of the sensor under real operating
conditions and to take into account the errors of the numerical modeling. A Gaussian noise with
different levels was applied to the data. The detection performance remained satisfactory up to
30% noise level. While the proposed approach has provided sound results, there are still some
challenges to be addressed in the future studies:

- The conducted analyses were based on discrete damage states, while cracking is a
continuous phenomenon in reality. Hence, developing FE models with continuous damage
propagation can result in a more realistic detection approach.

- The effect of high or low temperatures on the sensor output needs more research.

- Reliability of the sensor under different environmental and operating conditions should be
evaluated more in-depth.

- Verification of the long-term performance of the proposed approach for a real-life structure

is also an interesting topic for the future study.
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