FEASIBILITY OF EARLY DAMAGE DETECTION USING SURFACE MOUNTED SENSORS ON EXISTING PAVEMENTS

FINAL PROJECT REPORT

by

Nizar Lajnef
Karim Chatti
Hassene Hasni
Amir H. Alavi

Michigan State University

Sponsorship
Center for Highway Pavement Preservation (CHPP)

for

Center for Highway Pavement Preservation (CHPP)

In cooperation with US Department of Transportation-Office of the Assistant Secretary for Research and Technology (OST-R)

August 2016
Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The Center for Highway Pavement Preservation (CHPP), the U.S. Government and matching sponsor assume no liability for the contents or use thereof.
This study presents a self-powered surface sensing approach for detection of bottom-up cracking in asphalt concrete (AC) pavements. The proposed method was based on the interpretation of compressed data stored in memory cells of a self-powered wireless sensor. Different 3D finite element (FE) models of an AC pavement were developed using ABAQUS to generate the sensor output data. A realistic dynamic moving load was applied to the surface of the pavement via DLOAD subroutines developed by FORTRAN. A network of sensing nodes was placed at the top of the AC layer to assess their sensitivity to the progression of bottom-up cracks. Several damage states were defined using Element Weakening Method (EWM). A linear-viscoelastic behavior was considered for the AC layer. In order to detect the damage progression, several damage indicators features were extracted from the data acquisition nodes. The damage detection accuracy was improved through a data fusion model that included the effect of group of sensors. The proposed fusion model was based on the integration of a Gaussian mixture model (GMM) for defining descriptive features, different feature selection algorithms, and a robust and computational intelligence approach for multi-class damage classification. Furthermore, an uncertainty analysis was carried out to verify the reliability of the proposed damage detection approach. The results indicate that the progression of the bottom-up cracks can be accurately detected using the developed intelligent self-powered surface sensing system.
Table of Contents

Table of Contents ... iv
List of Figures ... vi
List of Tables .. viii
1. Introduction .. 9
2. Finite Element Modeling of Pavement Structure Subjected to a Moving Load 12
 2.1. Geometry and FE model .. 12
 2.2. Dynamic Analysis ... 15
 2.3. Material Characterization .. 17
 2.4. Loading ... 20
 2.4.1. Contact Area ... 20
 2.4.2. Contact Pressure ... 23
 2.5. Crack Modeling .. 25
 2.6. Sensors Location .. 28
 2.7. The FE Results .. 31
 2.7.1 Intact Simulations .. 31
 2.7.2. Reduced Modulus: 30% .. 32
 2.7.3. Reduced Modulus: 50% ... 36
 2.7.4. Reduced Modulus: 70% ... 37
 2.7.5. Reduced Modulus: 90% ... 37
 2.7.6. Maximum Strain vs Damage Mode ... 38
3. The Proposed Damage Detection Approach ... 47
 3.1. Working Principle ... 47
4. Damage classification .. 56
 4.1. Probabilistic Neural Network .. 56
4.2. Performance of the Initial Features ... 60
4.3. Data Fusion Model .. 63
 4.3.1. Feature Transformation ... 63
 4.3.2. Feature Selection .. 64
4.4. Uncertainty Analysis .. 70
5. Summary and Conclusions .. 71
References ... 74
List of Figures

Figure 1. (a) The 3D FE model of the pavement structure, (b) Meshed cross section of the AC layer... 14
Figure 2. The CIN3D8 element structure .. 15
Figure 3. Generalized Maxwell model consisting of n Maxwell elements Connected in parallel 17
Figure 4. Prony series fitted to the original sigmoid function .. 20
Figure 5. Tire contact area ... 22
Figure 6. Approximated rectangular loading .. 23
Figure 7. Loaded strip of the AC pavement section .. 24
Figure 8. (a) Cross section of the damage (b) Crack zone and measurement location 28
Figure 9. Sensors at 60mm Offset from Center .. 29
Figure 10. Sensors at 120 mm Offset from Center .. 29
Figure 11. Sensors at 180 mm Offset from Center ... 29
Figure 12. Sensors locations ... 30
Figure 13. Intact, Middle Sensors, E22 .. 31
Figure 14. Intact, 60 mm Sensors, E22 .. 31
Figure 15. Intact, 180 mm Sensors, E22 .. 31
Figure 16. 30% Reduced Modulus, 20 mm Damage, Middle Sensors, E22. 32
Figure 17. 30% Reduced Modulus, 40 mm Damage, Middle Sensors, E22. 33
Figure 18. 30% Reduced Modulus, 60 mm Damage, Middle Sensors, E22. 33
Figure 19. 30% Reduced Modulus, 20 mm Damage, 60 mm Sensors, E22. 34
Figure 20. 30% Reduced Modulus, 40 mm Damage, 60 mm Sensors, E22. 34
Figure 21. 30% Reduced Modulus, 60 mm Damage, 60 mm Sensors, E22. 34
Figure 22. 30% Reduced Modulus, Middle Sensor 1, E22 .. 35
Figure 23. 30% Reduced Modulus, Middle Sensor 2, E22 .. 35
Figure 24. 30% Reduced Modulus, 60 mm Sensor 1, E22 .. 35
Figure 25. 30% Reduced Modulus, 60 mm Sensor 2, E22 .. 35
Figure 26. 50% Reduced Modulus, Middle Sensor 1, E22 .. 36
Figure 27. 50% Reduced Modulus, Middle Sensor 2, E22 .. 36
Figure 28. 50% Reduced Modulus, 60 mm Sensor 1, E22 .. 36
Figure 29. 50% Reduced Modulus, 60 mm Sensor 2, E22 .. 36
Figure 30. 70% Reduced Modulus, Middle Sensor 1, E22 .. 37
Figure 31. 70% Reduced Modulus, Middle Sensor 2, E22 .. 37
List of Tables

Table 1. Prony Series Coefficients... 21
Table 2. Material properties .. 22
Table 3. The preselected strain levels and the gate injection rates considered for the analysis 49
Table 4. Features selected by SFS and their corresponding detection rates.. 66
Table 5. Features selected by SBS and their corresponding detection rates ... 67
Table 6. The damage detection performance for various noise levels using the optimal set of features . 70
1. Introduction

Structures health monitoring (SHM) is focused on detection of damage in structures at early stages using advanced technologies. Pavement health monitoring is an extension of the SHM concept that deals with assessing the structural state of pavement infrastructure systems. Distresses concentrated in asphalt concrete (AC) layers can lead to the failure of the pavement structure over time. The maximum tensile stresses are commonly developed at the bottom of the AC layer under repetitive loadings. As a result, cracks usually initiate at the bottom of the asphalt layer and start propagating to the surface of the pavement. This so called bottom-up fatigue cracking is one of the main failure modes in asphalt pavements. The fatigue life of pavements is mainly related to the nature and the amplitude of the applied loading (Miller and Belliger, 2003). A dynamic analysis and a realistic loading modeling are essential to provide accurate prediction of the pavement response. However, most of traditional pavement analysis methods assume a uniform circular loading area and a stationary analysis. Previous studies show that these assumptions may result in an unrealistic pavement response (Cebon, 1986; Yoo and Al-Qadi, 2007). According to a study developed by Cebon (1986), dynamic analysis may increase the fatigue damage and rutting damage by 4 times and at least 40 \% respectively. Furthermore, Yoo and Al-Qadi (2007) showed that the dynamic pavement response is usually higher than a quasi-static analysis. In fact, the pavement dynamic response is essentially a function of its natural frequency as well as the external loading frequency. Gillespie et al. (1993) showed that a vehicle speed of 30 mph has a loading frequency of about 4.6 Hz, and 6.5 Hz for 51 mph. Lourens (1992) reported that the magnitude of the stress and deflections in pavement highly depends on the loading frequency and they are different from the results given by a static loading. Yoo and Al-Qadi (2007) concluded that there is about 39 \% difference on the tensile strain at the bottom of the asphalt layer between a static and
transient dynamic analysis. In addition, flexible pavements are usually modeled as a linear elastic multilayer systems based on the theory of the two-layered elastic systems developed by Burmister in 1943 (Huang 1993). However, hot-mix asphalt (HMA) behaves as a viscoelastic material. This type of material exhibits time, rate and temperature dependency. Al-Qadi et al. (2004) and Elseifi et al. (2006) showed that the approximation of multilayered elastic system underestimates the pavement responses. Furthermore, the HMA mixture behaves as an elastic material only when for low temperature and high loading frequency. Therefore, an efficient pavement modeling should consider both the variation of the loading in time and space, the material on the frequency, and the amplitude of the applied stress.

From a sensing perspective, strain gages are widely used in roadways to detect variations in strains associated with pavement deterioration (Dong et al., 2012; Xue, 2013; Lajnef et al., 2013; Yang et al., 2014). However, the installation of many of the existing sensors demands considerable care during construction. The commonly-used H-shaped strain gages require precise individual placement and wiring systems. To cope with these limitations, recent development in the field of pavement health monitoring has revealed the capabilities of the wireless sensors networks (WSN) (Bennett et al., 1999; Attoh-Okine and Mensah, 2003; Ceylan et al., 2013; Alavi et al., 2016a, Chatti et al., 2016). However, nearly all of the available wireless sensors need an external power supply to activate the sensor. As a consequence, periodic replacement of the sensor battery is needed. This becomes more challenging and sometime impractical for the long-term pavement health monitoring. Therefore, energy harvesting methods have been used to self-power the sensors in structures. One of the most efficient energy harvesting methods is the use of piezoelectric transducers. This family of material has the ability of converting the mechanical energy into an electrical energy by harvesting the micro-strain energy from the structure. Thereafter, by
embedding a network of the piezoelectric transducers inside the asphalt pavement layer, they can generate electricity needed to empower the sensor. In this context, a self-powered wireless sensor, previously developed at Michigan State University (MSU) based on the “smart” pebble concept (Huang et al., 2010). Several studies looked at the applicability of this sensor for SHM (Lajnef et al. 2013; Alavi et al. 2016a,b,c). In the pavement health monitoring domain, Lajnef et al. (2013) showed that the pavement fatigue life can be predicted using the sensor. Alavi et al. (2016a) have tested the ability of the sensor for detection and localizing bottom-up cracking in asphalt pavement. In their study, they embedded the sensor inside the AC layer using a spherical epoxy packaging. The sensing system was placed two inches far from the bottom of the layer. Finite element (FE) simulations were also performed to assess the strain amplitude changes due to the bottom-up cracking (Alavi et al. 2016a). The developed FE models were based on an elastic material behavior and a quasi-static loading. Moreover, Alavi et al. (2016a) showed that only the sensors located above the cracks experience a notable change due to the damage progression. However, a disadvantage of embedding the sensors at the bottom of the AC layer is that they may be damaged due to excessive stresses. Furthermore, new pavement construction projects are negligible when compared to the extent of the exiting pavement network. It is thus more critical for State Highway Agencies (SHAs) to adopt monitoring techniques that can be adapted to existing pavements. It should be noted that surface sensing technologies such as remote sensing are commonly used for the monitoring of existing pavements. These methods use the electromagnetic spectrum to identify the surface and subsurface defects. In this context, ground-penetrating radar (GPR) employs the electromagnetic energy to detect subsurface anomalies. GPR can be used for both measuring the pavement thickness and locating voids. GPRs are able to identify cracks and measure cracks depth between 50 to 160 mm in flexible pavements. They can be attached to a service vehicle travelling
at highway speed (Zhou et al., 2012). However, major limitations of such methods are that they need notable energy to operate and may not be practical for continuous long-term monitoring purposes.

In order to cope with the limitations of the existing monitoring methods, this study proposes a self-powered wireless surface sensing approach for the detection of the bottom-up cracking in existing asphalt pavements. The propose method would not have major interference with regular pavement maintenance activities. A detailed study was conducted on the minimum spatial distance of the sensors from the damage zone, referred to as resolution, to provide sound detections. A dynamic analysis of a moving truck at highway speed was carried out through a realistic FE modeling. Different damage scenarios were considered by changing the size of the damage zone and the AC material properties. The sensor output was modeled based on the strains extracted from the surface of the AC layer at different sensing nodes. The sensors positions were defined in the longitudinal and transverse directions. Thereafter, features were extracted from the sensor data and fused to define new set of explanatory features. Finally a probabilistic neural network (PNN) classifier was used to classify the predefined damage scenarios.

2. Finite Element Modeling of Pavement Structure Subjected to a Moving Load

2.1. Geometry and FE model

ABAQUS software was employed to simulate the response of the pavement under a moving load. In the FE analysis, the stress/strain response is sensitive to element type and size as well as boundary conditions. In this study, 3D FE models were developed as they are more appropriate compared to a 2D axisymmetric model. In fact, a 3D model allows simulating the contact stresses between the tire footprint and the pavement surface. The pavement model was meshed using two
different types of elements: eight-node linear brick elements with reduced integration (C3D8R) and eight node linear infinite elements (CIN3D8). The standard finite elements were used to model the region of interest and the infinite elements were deployed in the far field region. This type of elements allows providing silent boundaries to the FE model in the dynamic analysis and reduces the number of elements at far field (ABAQUS, 2010). These elements have a special shape function to vanish the displacement field when the coordinates approach infinity. Such boundary type can minimize the reflection of the shear and dilatational waves back into the FE mesh (Al-Qadi et al., 2010). In a dynamic analysis, the infinite elements introduce additional normal and shear tractions on the FE boundary using a viscos damping boundary. The introduced normal and shear stresses are proportional to the velocity components as follows (Wang, 2011):

\[
\sigma = \rho c_p \dot{u} \\
\tau = \rho c_s \dot{v}
\]

where: \(\rho, \sigma, \tau, c_p, c_s, \dot{u}, \dot{v}\) are the material density, normal stress along the interface between the FE/infinite elements, shear stress along the interface FE/infinite elements, longitudinal wave velocity, shear wave velocity, normal velocity and tangential velocity, respectively. The wave velocities are given by the following expressions (Wang, 2011):

\[
c_p = \sqrt{\frac{(1-\nu)E}{(1-2\nu)(1+\nu)\rho}} \\
c_s = \sqrt{\frac{E}{2(1+\nu)\rho}}
\]

where \(E\) and \(\nu\) are the Young modulus and Poisson’s ratio, respectively. In this study, the length of the pavement section was 7 meters in the longitudinal direction (parallel to the traffic direction) and 6 meters in the transverse direction (perpendicular to the traffic direction). The pavement thickness was 6.3 meter. The pavement was composed of three layers: AC, base and subgrade.
layers. The thickness of the AC, base and subgrade layers are 100 mm, 200 mm and 6000 mm, respectively. Large model dimensions were used to reduce the edge effect and to achieve a full passage of the tire on the pavement. Fig. 1 displays the pavement model as well as the meshed cross section of the AC layer.

![Image of pavement structure and meshed cross section](image)

Figure 1. (a) The 3D FE model of the pavement structure, (b) Meshed cross section of the AC layer

According to a study conducted by Duncan et al. (1968), location of the infinite elements should be at least 12 times the radius of the loading area (R) in the horizontal direction. In this work, the infinite domain was located at approximately 16R from the initial and final location of the load center in the longitudinal direction, and 17R in the transverse direction. The total number of elements was 393,796 elements from dived into 363,440 element of type C3D8R and 30,356 element of type CIN3D8. Fig. 2 displays the structure of CIN3D8. A fine mesh was used around the loading path and a coarse mesh far away from the load. Different simulations were conducted to study the effect of the element dimensions on the pavement response. It was found that an element with dimensions of 20 mm × 20 mm could accurately capture the stress/strain response.
under the wheel footprint. The element thickness was chosen to be 10 mm for the AC layer, 20 mm for the base and from 20 mm to 500 mm for the subgrade. Furthermore, in a dynamic analysis, it is recommended that the maximum element size should not exceed 1/12 the minimum length of the elastic waves propagating inside the structure. The natural frequency of a typical flexible pavement, the vehicle loading frequency and the stress wave velocity are around 6-14Hz, 0.1-25Hz, and 100 m/s to 600 m/s, respectively. Accordingly, the defined element size is small enough to satisfy the minimum element size requirement.

Figure 2. The CIN3D8 element structure

2.2. Dynamic Analysis

For the pavement analysis, the loading can be modeled as a static, quasi-static, or dynamic loading. If the loading is stationary, a static analysis is suitable for the analysis. A quasi-static approach is a sequence of static loads that are moving from one position to another at each time step. Static and quasi-static do not include the effect of inertia forces. However, a dynamic analysis is more appropriate if the load is moving with a certain speed, in which the loading location changes in time and location according to the truck speed.. Therefore, this type of analysis was used in this study. The moving load problem can be treated as structural dynamic problem as it considers slower load changes than wave propagation problems. The response in a wave propagation
problem is rich in high frequency mode shapes. The analysis time is also in the order of the wave travel time across the structure. Therefore, a very short step-time is required for this type of analysis. In a structural dynamic problem, the response is dominated by low modes and the effect of high modes is insignificant (Chopra, 2001, Bathe, 1996). If the time required for the stress waves to propagate through the whole structure does not exceed a small portion of the load rise duration, the problem can be assumed to be a structural dynamic problem. As the vehicle speed is much smaller than the stress wave speed (100 m/s to 600 m/s), the problem was treated as a structural dynamic problem in this study. The equation of motion of a multi-degree of freedom system is as given below:

\[M \ddot{u} + C \dot{u} + K u = F \]

(5)

where \(M \) is the mass matrix, \(C \) is the damping matrix, \(K \) is the stiffness matrix, \(u \) is the displacement vector and \(F \) is the external force vector. The first term of the equation \(M \ddot{u} \) represents the inertia forces and \((C \dot{u} + K u)\) represents the internal forces.

There are two ways to solve this type of nonlinear equations; an implicit direct integration or an explicit direct integration method. The implicit procedure is more suitable for structural dynamic problems and usually provides good numerical stability. For the method, the displacements at two consecutive times are calculated by solving a set of nonlinear equation simultaneously.

In a dynamic analysis, the selection of the time increment is very important. According to Bathe (1996), the time increment \(\Delta t \) should be less than or equal to \(\frac{1}{20 f_{\text{dominant}}} \):

\[\Delta t \leq \frac{1}{20 f_{\text{dominant}}} \]

(6)

where \(f_{\text{dominant}} \) is dominant frequency of the response of a structure or of the loading. Herein, the time increment was taken 0.001 s which satisfies the time increment requirement as the highest loading frequency is usually lower than 10 Hz.
2.3. Material Characterization

Each layer of the modeled pavement had unique material properties. The HMA layer had viscoelastic properties while an elastic behavior was considered for the base and subgrade layers. The HMA modulus is time (frequency) and temperature dependent. In fact, the state of the stress in the AC layer does not only depend on the current strain but on the entire strain history. The expression of the stress in linear viscoelasticity can be expressed by a Boltzmann superposition integral as follows (Michalczyk, 2011):

\[
\sigma(t) = \int_0^t E(t - \tau) \frac{d\varepsilon}{d\tau} d\tau
\]

(7)

In the present study, a generalized Maxwell model was used for representing the linear-viscoelastic behavior of the HMA. This model is a combination of Maxwell elements (one spring and one dashpot) connected in parallel with a spring as shown in Fig 3.

![Generalized Maxwell model](image)

Figure 3. Generalized Maxwell model consisting of n Maxwell elements Connected in parallel

A single element Maxwell model is composed by one spring and one dashpot mounted in series. Therefore, the relationship between the stress-strain is expressed as follows (Michalczyk, 2011):

\[
\dot{\varepsilon}(t) = \frac{\sigma(t)}{E} + \frac{\sigma(t)}{\eta}
\]

(8)

where E is the elastic modulus and \(\eta \) is the viscosity parameter.
If the material is suddenly subjected to a deformation ε_0, the solution of the precedent equation becomes:

$$\sigma(t) = E\varepsilon_0 \exp\left(-\frac{t}{\tau}\right)$$

where τ represents the relaxation time. By performing a summation over the n Maxwell elements shown in Fig. 3, the stress equation becomes:

$$\sigma(t) = E_\infty \varepsilon_0 + \sum_{i=1}^{n} E_i \varepsilon_0 \exp\left(-\frac{t}{\tau_i}\right) = \left(E_\infty + \sum_{i=1}^{n} E_i \exp\left(-\frac{t}{\tau_i}\right)\right) \varepsilon_0$$

Therefore, the relaxation modulus:

$$E(t) = \frac{\sigma(t)}{\varepsilon_0} = E_\infty + \sum_{i=1}^{n} E_i \exp\left(-\frac{t}{\tau_i}\right)$$

This expression is a Prony series representation. The equilibrium modulus is E_∞, and the instantaneous modulus E_0 is the value of $E(t)$ at $t = 0$ given by:

$$E_0 = E_\infty + \sum_{i=1}^{n} E_i$$

By replacing the equilibrium modulus E_∞ by $(E_0 - \sum_{i=1}^{n} E_i)$, Eq. (11) can be rewritten as follows:

$$E(t) = E_0 - \sum_{i=1}^{n} E_i \left(1 - \exp\left(-\frac{t}{\tau_i}\right)\right)$$

Therefore, the Prony series representation is fully defined by (E_i, τ_i). For the FE modeling, ABAQUS uses the dimensionless Prony series representation based on the shear (G) and bulk (K) moduli to define a viscoelastic behavior (Michalczyk, 2011):

$$G(t) = \frac{E(t)}{2 (1+\nu)}$$

$$K(t) = \frac{E(t)}{3 (1-2\nu)}$$

If we divide both expressions by the initial values G_0 and K_0 respectively, we obtain:

$$\tilde{G}(t) = 1 - \sum_{i=1}^{n} \tilde{G}_i \left(1 - \exp\left(-\frac{t}{\tau_i}\right)\right)$$
and:
\[\tilde{k}(t) = 1 - \sum_{l=1}^{n} \tilde{k}_l (1 - \exp\left(-\frac{t}{\tau_l} \right)) \] (17)

Therefore, there are three parameters required in order to define a viscoelastic material property in ABAQUS (Michalczyk, 2011): the dimensionless shear relaxation modulus \(\tilde{g}_l \), the dimensionless bulk relaxation modulus \(\tilde{k}_l \), and the relaxation time \(\tau_l \). The relaxation modulus of the AC material used in this work was defined by four constants \(c_i \) \((i=1,2,3,4) \) from the sigmoid function given by the following expression:

\[\log(E(t)) = c_1 + \frac{c_2}{1 + \exp(-c_3 - c_4 \log(t_r))} \] (18)

where \(t_r \) is the reduced time, and \(c_i \) are coefficients related to the type of the AC material. In this work, the constants \(c_i \) were taken as follows:
- \(C_1 = 0.639 \)
- \(C_2 = 3.341 \)
- \(C_3 = 0.709 \)
- \(C_4 = -0.691 \)

A MATLAB code was developed to fit Eq. (13) to the relaxation modulus given by the sigmoid function (Eq. (18)) in order to obtain the Prony series coefficients. Fig. 4 displays the results of the fitting of the sigmoid function to the Prony representation. On this basis, 33 Prony coefficients were calculated. Thereafter, the dimensionless coefficients \(\tilde{g}_l \) and \(\tilde{k}_l \) were obtained based on the Prony coefficients \(E_i \). The instantaneous modulus was calculated based on the equilibrium modulus and the 33 coefficients as expressed by Eq. (19):

\[E_0 = E_\infty + \sum_{i=1}^{33} E_i = 9548 \text{ MPa} \] (19)

Table 1 presents the values used for the definition of the viscoelasticity material property for the AC layer. The Poisson’s ratio was equal to 0.35.
For the AC layer, there is no need to define an additional structural damping as it behaves as a viscoelastic material. However, as the base and the subgrade are elastic materials, it is important to include an additional damping to include the effect of energy absorption when the wave propagates through the soil. Therefore, a 5% damping ratio was defined for both the base and the subgrade layers. Table 2 presents the material properties of the three pavement layers.

2.4. Loading

2.4.1. Contact Area

Tire-pavement interaction is a complex phenomenon due to the tire footprint, non-uniform contact area, and shear stress components (Siddharthan et al., 1998). A tire footprint consists of many small surfaces contacting the pavement separated by ribs that may not make contact with pavement and thus may not contribute to loading. Defining a tire footprint that simulates a real tire-pavement interaction is possible using the FE modeling. Tielking and Roberts (1987) used the ILLIPAVE finite element pavement program to model non-uniform contact pressures of a tire moving on an asphalt pavement surface. Their tire contact pressure model took into account normal pressure, transverse shear pressure, and longitudinal shear pressure. Their results showed that non-uniform
contact pressure induced greater tensile strain at the bottom of the asphalt layer compared to uniform loading.

Table 1. Prony Series Coefficients

<table>
<thead>
<tr>
<th>(\ddot{g}_i)</th>
<th>(\ddot{K}_i)</th>
<th>(\tau_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000367</td>
<td>0.000367</td>
<td>1.00E-13</td>
</tr>
<tr>
<td>0.000262342</td>
<td>0.000262342</td>
<td>6.49E-13</td>
</tr>
<tr>
<td>0.000678368</td>
<td>0.000678368</td>
<td>4.22E-12</td>
</tr>
<tr>
<td>0.00108393</td>
<td>0.00108393</td>
<td>2.74E-11</td>
</tr>
<tr>
<td>0.00194552</td>
<td>0.00194552</td>
<td>1.78E-10</td>
</tr>
<tr>
<td>0.00338058</td>
<td>0.00338058</td>
<td>1.15E-09</td>
</tr>
<tr>
<td>0.00591073</td>
<td>0.00591073</td>
<td>7.50E-09</td>
</tr>
<tr>
<td>0.0102785</td>
<td>0.0102785</td>
<td>4.87E-08</td>
</tr>
<tr>
<td>0.0177787</td>
<td>0.0177787</td>
<td>3.16E-07</td>
</tr>
<tr>
<td>0.0304279</td>
<td>0.0304279</td>
<td>2.05E-06</td>
</tr>
<tr>
<td>0.0511115</td>
<td>0.0511115</td>
<td>1.33E-05</td>
</tr>
<tr>
<td>0.0829927</td>
<td>0.0829927</td>
<td>8.66E-05</td>
</tr>
<tr>
<td>0.126665</td>
<td>0.126665</td>
<td>0.000562</td>
</tr>
<tr>
<td>0.172722</td>
<td>0.172722</td>
<td>0.003652</td>
</tr>
<tr>
<td>0.193456</td>
<td>0.193456</td>
<td>0.023714</td>
</tr>
<tr>
<td>0.159339</td>
<td>0.159339</td>
<td>0.153993</td>
</tr>
<tr>
<td>0.0891806</td>
<td>0.0891806</td>
<td>1</td>
</tr>
<tr>
<td>0.0349519</td>
<td>0.0349519</td>
<td>6.49382</td>
</tr>
<tr>
<td>0.0112675</td>
<td>0.0112675</td>
<td>42.1697</td>
</tr>
<tr>
<td>0.00355265</td>
<td>0.00355265</td>
<td>273.842</td>
</tr>
<tr>
<td>0.00124161</td>
<td>0.00124161</td>
<td>1778.28</td>
</tr>
<tr>
<td>0.000492694</td>
<td>0.000492694</td>
<td>11547.8</td>
</tr>
<tr>
<td>0.000222137</td>
<td>0.000222137</td>
<td>74989.4</td>
</tr>
<tr>
<td>0.000108642</td>
<td>0.000108642</td>
<td>486968</td>
</tr>
<tr>
<td>5.68027e-05</td>
<td>5.68027e-05</td>
<td>3.16E+06</td>
</tr>
<tr>
<td>3.06136e-05</td>
<td>3.06136e-05</td>
<td>2.05E+07</td>
</tr>
<tr>
<td>1.69927e-05</td>
<td>1.69927e-05</td>
<td>1.33E+08</td>
</tr>
<tr>
<td>9.44883e-06</td>
<td>9.44883e-06</td>
<td>8.66E+08</td>
</tr>
<tr>
<td>5.45866e-06</td>
<td>5.45866e-06</td>
<td>5.62E+09</td>
</tr>
<tr>
<td>2.83722e-06</td>
<td>2.83722e-06</td>
<td>3.65E+10</td>
</tr>
<tr>
<td>2.16651e-06</td>
<td>2.16651e-06</td>
<td>2.37E+11</td>
</tr>
<tr>
<td>1.00153e-07</td>
<td>1.00153e-07</td>
<td>1.54E+12</td>
</tr>
<tr>
<td>1.83335e-06</td>
<td>1.83335e-06</td>
<td>1.00E+13</td>
</tr>
</tbody>
</table>
Table 2. Material properties

<table>
<thead>
<tr>
<th>Layer</th>
<th>Modulus (MPa)</th>
<th>Poisson’s ratio</th>
<th>Density (Kg/m3)</th>
<th>Damping (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>9548</td>
<td>0.35</td>
<td>2325</td>
<td>-</td>
</tr>
<tr>
<td>Base</td>
<td>193</td>
<td>0.3</td>
<td>2000</td>
<td>5</td>
</tr>
<tr>
<td>Subgrade</td>
<td>43</td>
<td>0.4</td>
<td>1500</td>
<td>5</td>
</tr>
</tbody>
</table>

However, simplifying the contact area can affect the pavement strain response since the distribution of the stress field in the contact zone can affect the pavement response (Tielking and Roberts, 1987; Wang and Machemehl, 2006; Yue and Svec, 1995). Tire pressure and load intensity affect contact pressure distribution (Tielking and Roberts, 1987; Alkasawneh et al., 2008; Mun et al., 2006; Weissman, 1999; Perret and Dumont, 2004). In the multilayered elastic theory, the shape of the tire footprint is assumed to have a circular shape as it conserves the property of an axisymmetric problem. Wang and Machemehl (2006) showed that the assumption of a uniform circular tire-pavement pressure area can underestimate the vertical compressive strains at the top of the subgrade and overestimate the tensile strains at the bottom of the AC layer. In most of the 3D FE modeling of pavement, the contact area between a tire and the pavement surface is approximated as a rectangle with two semi-circles as shown in Fig. 5.

![Figure 5. Tire contact area](image)

In this work, the contact area was assumed to be rectangular. The obtained contact area was transformed to a simple rectangle with the same width 0.6 L. The area of the contact area shown in Fig. 5 is equal to:

$$A_c = 0.4 \times 0.6 \times 0.6 = 0.5227 \times L^2$$

(20)
Therefore, if \(a \) denotes the length of the equivalent rectangle, the area of the equivalent rectangle (Fig. 6) is:

\[
A_c = a \times 0.6L = 0.5227L^2
\] (21)

which gives: \(a = \frac{0.5227L^2}{0.6L} = 0.8712L \)

![Approximated rectangular loading](image)

Figure 6. Approximated rectangular loading

The area of the contact area used in this work is \(A_c = 0.0260 \text{ m}^2 \). Therefore \(L \) is given by:

\[
L = \sqrt{\frac{A_c}{0.5227}} = \frac{0.0260}{0.5227} = 0.2230 \text{ m}
\] (22)

Thus, the dimensions of the rectangle are: \(0.8712L = 0.1943 \text{ m} \) and \(0.6L = 0.1338 \text{ m} \).

2.4.2. Contact Pressure

The loading of the pavement occurred in the center strip of the section. Fig. 7 highlights the loaded strip. In order to simulate the movement of the load at the desired speed, a user defined DLOAD subroutine was developed using FORTRAN. In fact, regular loading functions in ABAQUS do not allow varying the location of the applied load as a function of time. In order to overcome this problem, different approaches were proposed. The load and its amplitude can be shifted over the loading path at each step until a single wheel pass is completed (Al-Qadi and Wang, 2010; Alavi...
et al., 2016a). This approach is time consuming as it needs the definition of the footprint areas for each step. However, the DLOAD subroutine can be used to define the variation of the distributed load magnitude as function of the position, time, element number and load integration point number (ABAQUS, 2010).

The script specifies the center of the rectangular loading area and its dimensions, the initial and final position of the truck, the truck speed and the tire pressure. A highway speed of 67 mph (30 m/s) was inputted to the FORTRAN code and a tire pressure of 862 kPa was applied. The location of the center of the contact area was calculated by the DLOAD subroutine in each time step as follows:

\[x = v_x \times t + x_0 \]
\[y = v_y \times t + y_0 \]

(23)
(24)

where \(v_x \), \(v_y \), \(x_0 \) and \(y_0 \) are the speed in x direction, the speed in the y direction, the x-coordinate of the initial location of the tire center and the y-coordinate of the initial location of the tire center.

The vehicle speed was kept constant.

Figure 7. Loaded strip of the AC pavement section
In this work, the loading was assumed to follow the x-axis, therefore, v_y was set to zero. The chosen length of the vehicle path is 3 m. As the selected time step of the dynamic analysis was 0.001 second, the tire progresses by:

$$\Delta x_{time-step} = v \Delta t = 30 \times 0.001 = 0.03 m = 30 mm$$ \hspace{1cm} (25)

As the size of the element around the loading path is 20mm x 20mm, only one element was loaded in each time step.

2.5. Crack Modeling

Many recent studies on flexible pavement fatigue have been conducted using the FE softwares such as Abaqus and FEP++ (Huang et al., 2011; Mun et al., 2006, Sarkar, 2015, Shafabakhsh et al., 2015; Dave and Buttlar, 2010). These programs allow the user to define various complex parameters such as the viscoelastic properties of asphalt. A limitation of using the FE programs for the asphalt pavement analysis pertains to the definition of highly complex scenarios such as fatigue cracking. Fatigue cracking can begin as either a bottom-up crack, top-down crack, or a combination of the two. After repeated loading of the asphalt pavement, crack propagation and additional crack growth further weaken the pavement. These cracks that begin at one end can either continue growing through the thickness of the pavement or coalesce with a different crack growing in another direction. Modeling fatigue cracking inadequately can result in overestimation of fatigue life (Mun et al., 2006). Major factors affecting fatigue cracking are asphalt properties, asphalt thickness, and tire pressure among others. Generally, top-down cracking increases in thicker asphalt, stiffer asphalt, less stiff base and/or subgrade, and under non-uniform loading (Mun et al., 2006).
ABAQUS allows the user to define certain properties by a user subroutine (ABAQUS, 2010). Detailed crack modeling is typically defined using a user subroutine in order to realize more realistic results due to limitations in the basic modeling methods. Cracks defined in ABAQUS using basic modeling for asphalt pavement yield inaccurate results due to over simplification of the crack. Modeling a crack in ABAQUS can be done using extended finite element method (XFEM). Two major limitations that deter XFEM usage in the fatigue cracking pavement analysis are that the method is only viable in static cases and there is no crack growth. Creating a user subroutine to accurately model fatigue cracking in asphalt has yet to be accomplished. Song et al. (2006) have developed a user subroutine of a cohesive fracture model that successfully replicated cracking in asphalt concrete. Dave and Buttlar (2010) have successfully modeled thermal reflective cracking using a user-defined bilinear cohesive crack model. A crack can also be introduced using Element Weakening Method (EWM). Mishnaevsky Jr. (2004) has used this method to simulate the reduced properties resulting from cracking of particle reinforced composites.

In this work, the EWM was also used to introduce the damage to the pavement. Different scenarios were defined based on both the weakening state of the elements defining the damage zone and its height. On this basis, the element elastic modulus was reduced to a certain value in order to define a damage zone. A total of 13 damage states were studied which include 4 different cases of modulus reduction, each having three varying damage zone heights. A damage squared area of 120 mm × 120 mm (6 × 6 elements) was created at the bottom center of the HMA layer. The modulus of this area was reduced 30%, 50%, 70%, and 90% from the instantaneous modulus of the HMA layer. The damage zone heights were 20 mm, 40 mm, and 60 mm. Fig. 8 shows the damage location, cross section, and the measurement locations.

The defined damage states are as given below:
• Intact: Corresponding to the intact configuration,
• D20W30: The damage zone height is 20 mm and the modulus is reduced to 30 % of its initial value,
• D20W50: The damage zone height is 20 mm and the modulus is reduced to 50 % of its initial value,
• D20W70: The damage zone height is 20 mm and the modulus is reduced to 70 % of its initial value,
• D20W90: The damage zone height is 20 mm and the modulus is reduced to 90 % of its initial value,
• D40W30: The damage zone height is 40 mm and the modulus is reduced to 30 % of its initial value,
• D40W50: The damage zone height is 40 mm and the modulus is reduced to 50 % of its initial value,
• D40W70: The damage zone height is 40 mm and the modulus is reduced to 70 % of its initial value,
• D40W90: The damage zone height is 40 mm and the modulus is reduced to 90 % of its initial value,
• D60W30: The damage zone height is 60 mm and the modulus is reduced to 30 % of its initial value,
• D60W50: The damage zone height is 60 mm and the modulus is reduced to 50 % of its initial value,
• D60W70: The damage zone height is 60 mm and the modulus is reduced to 70 % of its initial value,
- D60W90: The damage zone height is 60 mm and the modulus is reduced to 90% of its initial value.

![Diagram](image)

Figure 8. (a) Cross section of the damage (b) Crack zone and measurement location

2.6. Sensors Location

Four rows of eight surface elements, representing sensors, were placed running longitudinally along one side of the pavement section. Each row of sensor elements was offset from the next row in the transverse direction by 60 mm. Sensor 1 was placed in the center of the pavement section and sensors were spaced at 200 mm from one another in the direction of tire loading. Figs 9-11 show the sensor locations. Sensor elements at 0 mm and 60 mm offset have matching element dimensions. Meshing becomes coarser farther away from the tire load path. Thus, sensor elements at 120 mm and 180 mm offset have large, rectangular dimensions when compared with the sensor elements closer to the center load path. Each of the sensor element rows were saved as element sets and assigned to save values of longitudinal strain (E11), transverse strain (E22), and 3D principal strain (EP1, EP2, EP3).
Figure 9. Sensors at 60mm Offset from Center.

Figure 10. Sensors at 120 mm Offset from Center.

Figure 11. Sensors at 180 mm Offset from Center.
Fig. 12 shows the location of the data acquisition nodes on the surface of the AC layer. A set of 32 elements were selected as the sensing nodes. The set was divided into 4 groups (Fig. 9). Each group contained 8 sensing nodes.

In each set, the first sensors was located at $y = 0$ and the distance between two consecutive elements was 200 mm. The transversal distance between two sets was 60 mm. Therefore, the offset of the sets from the center of the pavement ($y = 0$) was considered as follows:

- Set 1: $y = 0$
- Set 2: $y = 60$ mm
- Set 3: $y = 120$ mm
- Set 4: $y = 180$ mm
The longitudinal, transverse and principal strains ($\varepsilon_1, \varepsilon_2, \varepsilon_3$) for each of the predefined damage cases were subsequently extracted.

2.7. The FE Results

2.7.1 Intact Simulations

Figs. 13-15 show the time-history response of the transverse strain for the four rows of sensors in the Intact case. All sensors display equivalent amplitudes corresponding to their distance from the center in the transverse direction (y axis). Sensors located closest to the tire load show higher transverse strain compression peaks. Strain response of Figs. 13 and 14 does not exhibit a similar behavior to the strain response of Figs. 16. This is due to the larger element dimensions and rectangular shape of the sensor elements. As a result, strain values from sensor elements located 120 mm and 180 mm away from the center of the pavement in the transverse direction were not investigated further. Furthermore, particular attention was given toward areas exhibiting high strain.

![Figure 13. Intact, Middle Sensors, E22](image1)

![Figure 14. Intact, 60 mm Sensors, E22](image2)
2.7.2. Reduced Modulus: 30%

Figs. 16-18 show the transverse strain response of the sensor elements located along the center of the pavement for the 20 mm, 40 mm, and 60 mm damage modes in the 30% reduced modulus case. The sensor element closest to the damage has a much larger variation in strain response than the seven other sensor elements. Compressive transverse strain near the damage zone increases as damage size increases.
Figs. 19-21 show the transverse strain response of the sensor elements located 60 mm offset from the center of the pavement for the 20 mm, 40 mm, and 60 mm damage modes in the 30% reduced modulus case. Again, the sensor element closest to the damage has a much larger variation in strain response than the seven other sensor elements. Compressive transverse strain near the damage zone decreases as damage size increases.
Figure 19. 30% Reduced Modulus, 20 mm Damage, 60 mm Sensors, E22.

Figs. 22-25 show the two sensor elements closest to the damage zone. Sensor 1 in both the Middle location and 60 mm offset location display the most significant variation in transverse strain as damage length progresses. In the Middle location, Sensor 1 exhibits an increase in the compressive transverse strain as damage length increases. There is small variation in the strain for all damage modes in Sensor 2. In the 60 mm offset location, Sensor 1 shows a decrease in the compressive transverse strain as damage length increases. Sensor 2 displays small variation in strain for all damage modes.

Figure 20. 30% Reduced Modulus, 40 mm Damage, 60 mm Sensors, E22.
Figure 21. 30% Reduced Modulus, 60 mm Damage, 60 mm Sensors, E22.

Figure 22. 30% Reduced Modulus, Middle Sensor 1, E22

Figure 23. 30% Reduced Modulus, Middle Sensor 2, E22

Figure 24. 30% Reduced Modulus, 60 mm Sensor 1, E22

Figure 25. 30% Reduced Modulus, 60 mm Sensor 2, E22
2.7.3. Reduced Modulus: 50%

Figure 26. 50% Reduced Modulus, Middle Sensor 1, E22

Figure 27. 50% Reduced Modulus, Middle Sensor 2, E22

Figure 28. 50% Reduced Modulus, 60 mm Sensor 1, E22

Figure 29. 50% Reduced Modulus, 60 mm Sensor 2, E22
2.7.4. Reduced Modulus: 70%

Figure 30. 70% Reduced Modulus, Middle Sensor 1, E22

Figure 31. 70% Reduced Modulus, Middle Sensor 2, E22

2.7.5. Reduced Modulus: 90%

Figure 32. 70% Reduced Modulus, 60 mm Sensor 1, E22

Figure 33. 70% Reduced Modulus, 60 mm Sensor 2, E22

Figure 34. 90% Reduced Modulus, Middle Sensor 1, E22

Figure 35. 90% Reduced Modulus, Middle Sensor 2, E22
2.7.6. Maximum Strain vs Damage Mode

Results point toward a focus on the sensor elements closest to the damage zone. To this end, the following results highlight the differences in maximum strain values at the four sensor elements located closest to damage. Fig. 38 places a box around the location of the four sensor elements.

Figure 36. 90% Reduced Modulus, 60 mm Sensor 1, E22

Figure 37. 90% Reduced Modulus, 60 mm Sensor 2, E22
Figure 38. Four Sensor Elements.
Figure 39. 20mm Damage: Maximum Strain vs Location.
Figure 40. 40mm Damage: Maximum Strain vs Location.

Figure 41. 60mm Damage: Maximum Strain vs Location.
Fig. 42 shows the time history of the first principal strains (in absolute value) for different sensors and for the intact, D20W90, D40W90 and D60W90 damage states. As it seen, for sensor S1, which is located above the damage zone, the amplitude of the strains is much higher than the other sensors. Moreover, as the damage progresses from the intact to the 60 mm damage height, the amplitude of the first principal strains increases as well. The difference of the amplitudes between the Intact and the D60W90 damage state is 111.7 με.

![Figure 42. Strain history of sensor S1 for different damage states](image)

Fig. 43 displays the results for sensor S2. Evidently, the difference of the maximum principle strains is being reduced comparing to sensor S1 as the sensor is located at a 200 mm offset from the center of the damage zone. Fig. 44 shows a closer view of the peak values for sensor S2. Fig. 45 displays the results for sensor S17 which is located at x = 0 and at y = 120 mm. As it seen, the amplitude of the strain is changing between damage states but it does not have an increasing trend as for sensors S1 and S2 (Fig. 46). However, for sensor S18 which has a 120 mm offset from the x-axis and 200 mm offset from the y-axis, the strain amplitude continuously increases as the damage progresses (Fig. 47). Based on the results, it can be concluded that the amplitude of the
strains is affected by the damage states as well as the location of the sensor with respect to the damage.

Figure 43. Strain history of sensor S2 for different damage states

Figure 44. Zooming around the peak values for sensor S2
Figure 45. Strain history of sensor S17 for different damage states

Figure 46. Zooming around the peak values for sensor S17
Fig. 48 and 49 present the variation of the maximum first principal strain (in absolute value) with respect to the percentage of modulus reduction for different damage heights. As seen in these figures, the amplitude of the strain depends on the offset of the sensor with respect to the damage zone. In fact, for a fixed reduction in the asphalt modulus, the strain amplitude increases for sensors S1 and S2 but the behavior changes when the sensors is located at a certain offset from the damage center. Furthermore, as it is illustrated by sensor S17, for a fixed damage height, the strain increases with the percentage of modulus reduction for the case of 20 mm but it has a decreasing trend for the two other damage lengths (40 mm and 60 mm). However, when the sensors are located along the wheel path, a unique trend was observed. In this case, the amplitude of the first principal strain increases with the damage height and the percentage of modulus reduction.
Figure 48. Variation of the Maximum principal strains with the damage state for Sensors 1 and 2
3. The Proposed Damage Detection Approach

The damage detection approach proposed in this work was divided into three stages. The first step was focused on generating the sensor output based on the time history of the first principal strain obtained on the previous section. Thereafter, a feature transformation method was applied to the original set of data find a reasonable relationship between the damage progression and the data of the network of sensors. Finally, a PNN classifier was used to classify the pre-defined damage classes.

3.1. Working Principle

The new class of floating-gates sensors is mainly based on the strain-energy harvested from the structure under excitation by a piezoelectric transducer. The sensors have 7 memory cells that cumulatively store the droppage in strain at a predefined threshold level. Each cell has a specific threshold level and injection rate. When the amplitude of the strain at the sensor location exceeds the threshold level of a specific gate, it starts recording the cumulative strain droppage. The
injection rate is defined as the quantity of droppage in strains in 1 second at a specific memory gates.

Fig. 50 displays the procedure of obtaining the strain droppage ($\varepsilon_0 - \varepsilon_{sensor}$) at the sensor level. As it seen from the figure, the sensor strain droppage is in the form of a histogram that have different amplitude for each gate. In fact, each memory cell has an initial strain value ε_0. After applying a certain number of loading cycles, the initial strain decreases linearly with the number of cycles. Furthermore, the strain value ε_{sensor} at each gate could be written as:

$$
\varepsilon_{sensor} = \varepsilon_0 - I_{gl} \sum_k \Delta t_{k}^{gl}
$$

where I_{gl} is the strain injection rate and Δt_{k}^{gl} is the k^{th} time intersection interval at gate gi. In this case, the shape of the histogram is random and will not follow a specific trend. The injection rates play a very important role in defining the sensor output.

Figure 50. Procedure of obtaining the strain droppage

For the analysis, the initial strain value in each memory was set to 500 $\mu \varepsilon$. The gate injection rates as well as the strain threshold levels are displayed in Table 3. The selection of the thresholds and number of gates was based on the injection rates of the existing sensors. The activation strain of
the sensor is 80 $\mu\varepsilon$ below which the device does not record any information. The maximum threshold is 200 $\mu\varepsilon$.

Table 3. The preselected strain levels and the gate injection rates considered for the analysis

<table>
<thead>
<tr>
<th>Gate number</th>
<th>Strain threshold level ($\mu\varepsilon$)</th>
<th>Injection Rates ($\mu\varepsilon/s$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>0.001000</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0.005710</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>0.023162</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>0.027822</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>0.006562</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
<td>0.005989</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>0.032792</td>
</tr>
</tbody>
</table>

Fig. 51 presents the variation of the sensor strain at each gate versus the number of applied cycles for the intact pavement and a typical damage state. For brevity, only the results pertaining to the intact and D60W90 modes were compared for sensor S1.
As it is seen in Fig.51, the strain varies linearly as a function of the number of cycles. In addition, the slopes of the lines corresponding to the damaged pavement are higher (in absolute value) than the intact phase. This can be explained by the fact that the amplitude of strain continuously increases at location of sensor S1 with respect to the damage progression. Thereafter, the cumulative time intersection increases with an increase in the strain amplitude. Although it can be seen that the output of the sensor changes with damage progression, there is a considerable loss of information. In fact, the sensor does not provide information about the strain distribution histograms induced by service loads which makes the task of interpreting the sensor data a challenging problem.

Alavi et al. (2016a,b,c) showed that the cumulative time histogram can be characterized by a Gaussian cumulative density function (CDF). A CDF is fully defined by only two parameters: the mean and the standard deviation of the distribution. These parameters were shown to be good indicators for damage detection (Alavi et al.2016a). On the other hand, when the gates have
variable injection rates, the CDF fit will not work. Accordingly, in this work, a Gaussian mixture model (GMM) was proposed to fit the cumulative droppage of the strain at the sensing nodes. The GMMs are very powerful tools to adequately describe many types of data. In fact, certain models exhibit a multimodality that are poorly describes by a single Gaussian distribution. In the case of different injection rates, the output histogram is expected to have different rate of variation resulting in multiple maxima. Therefore, a multi-modal Gaussian mixture model can be a good fit for the data. The probability density function (PDF) of a GM distribution is given by the following expression:

\[
p(x) = \sum_{k=1}^{M} \frac{c_k}{\sqrt{2\pi}\sigma_k^2} \exp \left[-\frac{1}{2} \left(\frac{x - \mu_k}{\sigma_k} \right)^2 \right]
\]

where: \(\mu_k, \sigma_k\ (k = 1..M)\) are mixture component parameters (mean and standard deviation) and \(c_k\) are the mixture weights. The mixture weights of the PDF should satisfy the following condition:

\[
\sum_{k=1}^{M} c_k = 1
\]

(28)

The strain droppage histogram was fitted by a bimodal GMM as follows:

\[
\Delta\varepsilon(g) = \left(\sum_{i=1}^{7} \Delta\varepsilon_i \right) \sum_{k=1}^{2} \frac{\alpha_k}{\sqrt{2\pi}\sigma_k^2} \exp \left[-\frac{1}{2} \left(\frac{g - \mu_k}{\sigma_k} \right)^2 \right]
\]

(29)

where \(g\) is the gate number, \(\mu_k, \sigma_k\) are the mixture components parameters, \(\alpha_k\) is a parameter that represents the mixture weights and \(\Delta\varepsilon_i\) is the cumulative droppage in strain at gate number \(i\). Eq. (29) has 6 parameters to estimate: \((\mu_k, \sigma_k, \alpha_k)\), \(k=1,2\). These parameters were obtained based on the 7 values of each gate of the sensor. Fig. 20 displays the obtained GMM fit of the data at sensor S1.

1 million traffic cycle was applied to the pavement in order to get a significant droppage of the sensor output data. It is important to mention that the injection rates could be modified using an additional resistance in parallel with the internal resistance of the sensor. Therefore, for a fatigue
analysis, the impedance of the sensor should be increased in order to lower the gates injection rates.

As seen in Fig. 52, the output histogram presents 2 peaks corresponding to the first two maximum strain drops. It is important to mention that the maximum values do not only correspond to the gate with the highest injection rate, but it is also related to the threshold levels, the number of cycles and the strain rate variation. Fig. 53 displays the results of the GMM for different sensors. The GMM curves were plotted for the intact configurations and for D60W90 damage state. Based on the results, the GM distribution deviates from one damage states to another. According to section 3.8, the amplitude of the strain changes with damage. As a result, the cumulative time intersection changes as well and affects the variation of the strain at the sensor level.

For sensor S1, the mean (μ_1) of the first components of the GM shifts to the left (deceases) and the second mean μ_2 shifts to the right (increases). In addition, the standard deviations σ_1 and σ_2 increase with damage progression as the distribution expands. Furthermore, when the sensor is located far from the damage zone, the variation of the GMM parameters becomes less significant as indicated by sensors S2 and S3.

Figure 52. The GMM fit to the sensor data

As seen in Fig. 52, the output histogram presents 2 peaks corresponding to the first two maximum strain drops. It is important to mention that the maximum values do not only correspond to the gate with the highest injection rate, but it is also related to the threshold levels, the number of cycles and the strain rate variation. Fig. 53 displays the results of the GMM for different sensors. The GMM curves were plotted for the intact configurations and for D60W90 damage state. Based on the results, the GM distribution deviates from one damage states to another. According to section 3.8, the amplitude of the strain changes with damage. As a result, the cumulative time intersection changes as well and affects the variation of the strain at the sensor level.

For sensor S1, the mean (μ_1) of the first components of the GM shifts to the left (deceases) and the second mean μ_2 shifts to the right (increases). In addition, the standard deviations σ_1 and σ_2 increase with damage progression as the distribution expands. Furthermore, when the sensor is located far from the damage zone, the variation of the GMM parameters becomes less significant as indicated by sensors S2 and S3.
Figure 53. The GMM distributions for different sensors
An interesting observation from the output of sensor S9 is located at a 120 mm offset from the center of the pavement is that σ_2 shows a significant variation between the intact and the damaged configurations. At the location of sensor S9, the maximum strain obtained by the FE model was below $180 \mu\varepsilon$ for the intact configuration. Therefore, gates 6 and 7 were still inactive and they did not record any data. When the damage reaches the D60W90 damage state, the maximum strain increased to $210.94 \mu\varepsilon$ which is above the maximum threshold level of all the gates. Thus, all the gates become active. When the output of sensor S9 is fitted by the GMM, the intact configuration presents a very small σ_2 and a mean μ_2 below 6 in order to satisfy the zero strain condition described before. However, when the all the gates become active at the the last damage state (D60W90), the standard deviation of the second mixture component increases to 1.34 which is more than 16 times higher than σ_2 of the intact configuration. This considerably affects the width of the distribution.

For sensor S17, the amplitude of the strains was below $140 \mu\varepsilon$ for both of the intact and the damaged configurations. Therefore, only the first 3 gates were active. On the other hand, all the sensors located at 180 mm offset, the strain amplitude is lower than the minimum threshold of the sensor. Thus, all the gates of these sensors remained inactive.

Based on the results, the bimodal GM parameters change due to the damage progression in the structure. Thus, the damage could be defined as function of these parameters as follows:

$$\text{Damage} = \text{function} (\mu_1, \sigma_1, \mu_2, \sigma_2)$$

(28)

However, the changes of the GM parameters are not always consistent. For example, for sensor S1, μ_1 and σ_1 decrease and the second components (μ_2, σ_2) increase when damage progresses from the intact to D60W90 mode. For sensor S17, μ_1 and μ_2 increase and σ_1 and σ_2 decrease. Thus, it can be concluded that μ_1, σ_1, μ_2 damage, and σ_2 are good damage indicators but cannot be
individually used for classifying the damage state. To deal with this issue, a pattern recognition approach was developed to precisely detect the damage progression.

4. Damage classification

4.1. Probabilistic Neural Network

Computational intelligence (CI) includes a set of nature-inspired approaches can determine the model structure by automatically learning from data. CI provides alternative solutions to overcome the limitations of the traditional mathematical modeling (Alavi et al., 2016b). These limitations might be associated with the uncertainties during the process, the complexity or the stochastic nature of the process. Among different CI techniques, artificial neural network (ANNs), support vector machines (SVM) and fuzzy inference system (FIS) have been widely used in the field of damage detection (Szewezyk and Hajela 1994; Wu et al. 1992; Masri et al. 1993; Elkordy et al. 1993; Zhao et al. 1998). Major drawbacks of the widely-used ANNs are its ‘black box’ nature, the proneness to overfitting, and the time-consuming iterative procedure required during training of the network to obtain the optimal learning parameters (Yan and Miyamoto, 2003). To overcome such limitations, PNN has been proposed by Specht (1990). One advantage of PNNs is that it does not have a separate training phase which makes the execution faster than the conventional neural networks.

PNN is derived from standard Bayes classification and classical estimators for PDF. It is commonly used for pattern classification and recognition problems (Goh, 2002, Yan and Miyamoto, 2003, Adeli and Panakkat 2009). PNN uses the non-parametric density estimation scheme for density estimation based on the Parzen window technique. The Bayes formula can be expressed as follows:
\[P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)} \] (29)

where \(P(\omega_j \mid x) \) is the posterior probability, \(P(\omega_j) \) is the prior probability and \(P(x \mid \omega_j) \) is the likelihood of \(\omega_j \) with respect to \(x \). The Bayes decision rule is based on the maximization of the posterior probability. As the evidence \(p(x) \) is independent of the class label, then the decision rule can be determined by estimating the likelihood probability for each class and priors.

The prior probabilities \(P(\omega_j) \) can be calculated based on training data. Thus, the only remaining unknown in the Bayes formula is the posterior probability. This class conditional probability could be estimated using the non-parametric density estimation scheme via the Parzen windows approach. More details about PNN can be found in (Duda, Hart, and Stork 2000, Cristopher and Bishop, 2006). Assuming we have \(N \) training samples, \(\{x_1, \ldots, x_N\} \), divided into \(c \) classes, each of which \(d \) dimensional, and the \(h \) is the length of side of hypercube, the estimation of density at a point \(x \) in the \(d \) dimensional space is:

\[
p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^d} k \left(\frac{x - x_n}{h} \right)
\] (30)

In Eq. (30), \(k((x - x_n)/h) \) is the kernel function that is used to count the number of patterns located inside the volume of the hypercube of volume \(V = h^d \).

Similarly, the class conditional density of \(x \) given \(\omega_j \) can be calculated as follow:

\[
P(x \mid \omega_j) = \frac{1}{N_j} \sum_{n=1}^{N_j} \frac{1}{h^d} k \left(\frac{x - x_n^j}{h} \right)
\] (31)

When a Gaussian as kernel function is used, the final estimation becomes:

\[
P(x \mid \omega_j) = \frac{1}{N_j} \sum_{n=1}^{N_j} \frac{1}{\sigma^d} \frac{1}{(2\pi)^{d/2}} \exp \left(-\frac{1}{2} \frac{\|x - x_n^j\|^2}{\sigma^2} \right)
\] (32)

The precedent expression can be written as follow:
\[
P(x|\omega_j) = \frac{1}{\mathcal{N}_j(2\pi)^{\frac{d}{2}}\sigma^d} \sum_{n=1}^{\mathcal{N}_j} \exp\left(-\frac{\|x - x_n^j\|^2}{2\sigma^2}\right)
\]

where \(\mathcal{N}_j\) is the number of training patterns of class \(\omega_j\), \(\sigma\) is called the smoothing parameter that describes the spread of the Gaussian window function, and \(x_n^j\) is the \(n\)th pattern belonging to class \(\omega_j\). The feature vectors \(x_n\) represent the center of the Gaussian window. The smoothing parameter \(\sigma\) need to be determined experimentally.

A typical PNN with a 4-layer architecture is shown in Fig. 54. The network is constructed by the following layers: input layer, pattern layer, summation layer, and output layer. The input layer consists of \(d\) input unit, which corresponding to the \(d\) features. Each input unit is connected to each of the \(n\) pattern units (Alavi et al., 2016b). Each pattern unit will apply a dot product with its weighted vector \(w_k\) on \(x\), yielding the net activation or simply net:

\[
\text{net}_k = w_k^T x
\]

The nonlinear function called activation function or transfer function will then transfer the net activation to the output to summation layer:

\[
\text{activation} = e^\frac{-\text{net}_k}{\sigma^2}
\]

Notice that the activation function has the same form to the Gaussian kernel:

\[
e^{(\text{net}_k - 1)/\sigma^2} = e^{-(x'x + w_k^T w_k - 2w_k^T x)/2\sigma^2} = e^{-(x-w_k)'(x-w_k)/2\sigma^2} \propto \text{k}(\frac{x - w_k}{h})
\]

Each neuron in the summation layer will sum these local estimates the PDFs of a single population. Thereafter, if the prior probabilities are the same and the cost functions of making an incorrect decision are the same, for all classes, the decision layer classifies according the Bayes decision rule as follows:

\[
c(x) = \underset{j=1,c}{\text{argmax}} \ P(x|\omega_j)
\]
When the priors and the cost functions are different between classes, the classification decision becomes:

\[
c(x) = \arg\max_{j=1,c} p(x|\omega_j) \cdot P(\omega_j)L_j
\]

(38)

where \(L_j\) is the loss function associated with the misclassification of the input vector. The training of PNN is very fast, and it guaranteed the convergence to an optimal classifier as the size of training samples increases. Also, PNN does not have local minima issues. However, one major challenge is to find the optimal smoothing parameter \(\sigma\). A very small \(\sigma\) will produce many empty hypercube and in overfitting problems. On the other hand, if window width is too large, the PNN classifier may under-fit the data as it cannot present some important local variation. Therefore, the accuracy of the PNN classifier is highly dependent on the choice of the smoothing parameter (Alavi et al., 2016b).

As mentioned before, 32 sensors were defined on the surface of the pavement. However, only 15 sensors were considered in this analysis for the following two reasons:

- The maximum strain at the 180 mm offset set of sensors is below the minimum threshold of the sensor.

- The difference on the strain peak value for last 3 sensors of each set between two damage states of each set is very low.

Therefore, only sensors S1, S2, S3, S4, S5, S9, S10, S11, S12, S13, S17, S18, S19, S20, and S21 were used in the analysis.
Furthermore, the damage states were divided into 4 general classes as follows:

- ω_1: Intact structure
- ω_2: D20W30, D20W50, D20W70, D20W90
- ω_3: D40W30, D40W50, D40W70, D40W90
- ω_4: D60W30, D60W50, D60W70, D60W90

Each sensor represents a pattern for the classifier, therefore the total number of data is: $15 \times 13 = 195$. The performance of the developed models was measured using Detection Rate (DR):

$$DR = \frac{Number\ of\ Patterns\ Correctly\ Classified}{Total\ Number\ of\ Patterns}$$

(39)

4.2. Performance of the Initial Features

The initial feature vectors were defined based on the GMM parameters ($\mu_1, \sigma_1, \mu_2, \text{ and } \sigma_2$). These parameters were used to characterize the initial input vector \mathbf{x} as follows:
\[\mathbf{x} = [x_1 x_2 x_3 x_4]^T \] \hspace{1cm} (40)

where:

\[
\begin{align*}
 x_1 &= \mu_1 \\
 x_2 &= \sigma_1^2 \\
 x_3 &= \mu_2 \\
 x_4 &= \sigma_2^2
\end{align*}
\] \hspace{1cm} (41)

As indicated by Eq. (40), the initial problem has 4 dimensions. Thus, 195 4-dimensional patterns were used for the classification. The total number of data was divided into 3 sets:

- 70 % training = 137 data sets
- 15 % validation = 29 data sets
- 15 % testing = 29 data sets

As one would expect, these 4 initial features provided very low accuracy on the validation and testing data. The maximum detection rates for the validation and testing data were 27.58% and 13.79%, respectively. Fig. 55 displays the results of the classification in the validation set as a function of the PNN smoothing parameter (\(\sigma_{PNN}\)). Multiple iterations were performed by varying the smoothing parameter in order to find the optimal value that gives the best accuracy on the training and validation sets. The best configuration was then applied to un-seen testing data. As seen in Fig. 23, the best detection rate was obtained when the optimal smoothing parameter is between 1 and 10. Hence, the optimum value of \(\sigma_{PNN}\) is equal to 1.

Later, a Principal Component Analysis (PCA) was performed on the initial set of patterns in order to visualize the data along its first two principal components. This method can reduce a high-dimensional space to a lower-dimensional space that optimally describes the highest variance of the data.
Fig. 56 displays the original input data \(x \) project on the two first principal components. The obtained eigen values of the covariance matrix are: \(\lambda_1 = 152.49, \lambda_2 = 1.61, \lambda_3 = 0.02, \lambda_4 = 1.57\times 10^{-4} \). Hence, the first two components represent 99.99 % of the data. The detection accuracy using the reduced feature vector: \(x' = [x_1 x_2]^T \) was increased from 13.79 % to 34.48 % for the testing data. Furthermore, as seen in Fig. 56, the defined 4 damage classes overlap intensively which results in low detection accuracy.

Figure 55. Accuracy versus smoothing parameter for the validation set

Figure 56. Projection of the featured data onto the first two principal components
4.3. Data Fusion Model

4.3.1. Feature Transformation

According to the preliminary results, the initial input feature vector \(x \) did not contain enough information to separate classes. Hence, a new strategy was defined to improve the damage detection performance. On its basis, it was decided to fuse both the information provided by one sensor and all the information supplied by the other sensors in that specific sensor layout. This approach is also known as the ’group effect’ of sensors (Alavi et al. 2016a,b,c). In this case, even if one sensor does not sense the damage, the group effect (sensor network) will help detect the damage classes. Fig. 57 summarizes the proposed method for the data fusion model.

The proposed feature transformation \(\varphi \) could be written as follows:

\[
\begin{align*}
\varphi: \mathbb{R}^4 &\xrightarrow{\text{feature transformation}} \mathbb{R}^{10} \\
[x_1 x_2] \quad \varphi &\quad [y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 y_9 y_{10}]
\end{align*}
\]

(42)
The new set of input parameters were introduced to the formulation of the damage state as follows:

\[y = \begin{cases}
 y_1 = \frac{x_1 - x_{1\text{ave}}}{x_{1\text{STD}}} \\
 y_2 = \frac{x_2 - x_{2\text{ave}}}{x_{2\text{STD}}} \\
 y_3 = \frac{x_3 - x_{3\text{ave}}}{x_{3\text{STD}}} \\
 y_4 = \frac{x_4 - x_{4\text{ave}}}{x_{4\text{STD}}} \\
 y_5 = \frac{x_1 - x_{1\text{AVE}}}{x_{1\text{AVE}}} \\
 y_6 = \frac{x_2 - x_{2\text{AVE}}}{x_{2\text{AVE}}} \\
 y_7 = \frac{x_3 - x_{3\text{AVE}}}{x_{3\text{AVE}}} \\
 y_8 = \frac{x_4 - x_{4\text{AVE}}}{x_{4\text{AVE}}} \\
 y_9 = \frac{(x_1 + x_3) - (x_{2\text{AVE}} + x_{4\text{AVE}})}{x_{1\text{AVE}} + x_{3\text{AVE}}} \\
 y_{10} = \frac{(x_2 + x_4) - (x_{1\text{AVE}} + x_{3\text{AVE}})}{x_{2\text{AVE}} + x_{4\text{AVE}}}
\end{cases} \tag{43} \]

where,

- \(x_i \): The \(i \)-th feature of the initial feature vector,
- \(x_{i\text{AVE}} \): The average of \(x_i \) for all patterns corresponding to a specific damage state,
- \(x_{i\text{STD}} \): The standard deviation of \(x_i \) for all patterns corresponding to a specific damage state.

The new defined features \(y_i \) (i=1..10) were derived from the conventional z-score functions. In fact, features \(y_1 \) to \(y_4 \) are the z-score functions and features \(y_5 \) to \(y_{10} \) are functions that are inspired by the form of the conventional z-score function. All the \(y_i \) (i=1..10) were based on the average and the standard deviation of all patterns for a specific damage state.

4.3.2. Feature Selection

The new features were expected to increase the ‘distance’ between classes especially between two consecutive damage states. The word distance here refers to Euclidian distance between two
features in the d-dimensional space belonging to two different classes. Furthermore, by increasing
the dimensionality of the problem from 4 to 10, the accuracy is more likely to increase. However,
increasing the number of features may also lead on the curse of dimensionality. Therefore, different
feature selection methods were used to tackle this problem. In this work, sequential forward
selection (SFS), sequential backward selection (SBS) and exhaustive search (brute-force)
algorithms were used to select the best set of features (Aha and Bankert, 1995; Zongker and Jain,
1996; Weston et al., 2000; MathWorks, 2016).

SFS:

SFS sequentially add the best feature \(y^+ \) that maximizes the objective function \(J(Z + y^+) \). The
SFS algorithm works as follows (MathWorks, 2016):

1. Start with the empty set \(Z_0 = \{\emptyset\} \)
2. Select the next best feature: \(y^+ = \arg \max_{x \in Z_k} J(Z_k + x) \)
3. Update \(Z_{k+1} = Z_k + x^+; k = k + 1 \)

Go to 2

Table 4 displays the sets selected by the SFS algorithm and their performances for each step. The
best accuracy on the training, validation and testing data was obtained using the feature vectors \(Z_8 \)
or \(Z_9 \) selected as follows:

\[
Z_8 = \{y_9, y_1, y_2, y_3, y_4, y_5, y_6, y_7\} \quad (44)
\]

\[
Z_9 = \{y_9, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8\} \quad (45)
\]

The detection rate accuracy using the feature vectors \(Z_8 \) or \(Z_9 \) was 100%, 96.55% and 93.10% for
the training, validation and testing data, respectively. The optimal smoothing parameter was
obtained for each iteration of the algorithm.
<table>
<thead>
<tr>
<th>Set Number</th>
<th>Features</th>
<th>Training Accuracy (%)</th>
<th>Validation Accuracy (%)</th>
<th>Testing Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{y_9}</td>
<td>94.89</td>
<td>89.65</td>
<td>89.65</td>
</tr>
<tr>
<td>2</td>
<td>{y_9, y_1}</td>
<td>100</td>
<td>89.65</td>
<td>93.10</td>
</tr>
<tr>
<td>3</td>
<td>{y_9, y_1, y_2}</td>
<td>100</td>
<td>79.31</td>
<td>93.10</td>
</tr>
<tr>
<td>4</td>
<td>{y_9, y_1, y_2, y_3}</td>
<td>100</td>
<td>79.31</td>
<td>93.10</td>
</tr>
<tr>
<td>5</td>
<td>{y_9, y_1, y_2, y_3, y_4}</td>
<td>100</td>
<td>82.75</td>
<td>93.10</td>
</tr>
<tr>
<td>6</td>
<td>{y_9, y_1, y_2, y_3, y_4, y_5}</td>
<td>100</td>
<td>82.75</td>
<td>93.10</td>
</tr>
<tr>
<td>7</td>
<td>{y_9, y_1, y_2, y_3, y_4, y_5, y_6, y_7}</td>
<td>100</td>
<td>96.55</td>
<td>93.10</td>
</tr>
<tr>
<td>8</td>
<td>{y_9, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8}</td>
<td>100</td>
<td>96.55</td>
<td>93.10</td>
</tr>
<tr>
<td>9</td>
<td>{y_9, y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_10}</td>
<td>100</td>
<td>96.55</td>
<td>89.65</td>
</tr>
</tbody>
</table>

SBS:

This method sequentially removes the worst feature y^- that least reduces the objective function $J(Z - y^-)$. The SBS algorithm works as follows (MathWorks, 2016):

1. Start with the full set $Z_0 = y$.
2. Remove the worst feature: $y^- = \arg\max_{x \in Z_k} J(Z_k - x)$
3. Update $Z_{k+1} = Z_k - x^-; k = k + 1.$

Go to 2

Table 5 displays the sets selected by the SBS algorithm for each step. The best accuracy on the training, validation and testing data was obtained using the feature vectors Z_1, Z_2 or Z_3, where:

\[
Z_1 = \{y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}\} \quad (46)
\]

\[
Z_2 = \{y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}\} \quad (47)
\]

\[
Z_3 = \{y_3, y_4, y_5, y_6, y_7, y_8, y_9\} \quad (48)
\]
The best detection accuracy was 100%, 96.55%, 93.10% for the training, validation and testing data, respectively. Multiple iterations were performed for each iteration to find the optimal smoothing parameter. Therefore, the optimal set extracted by the SBS algorithm is Z_3 which has 7 dimensions.

Table 5. Features selected by SBS and their corresponding detection rates

<table>
<thead>
<tr>
<th>Set Number</th>
<th>Features</th>
<th>Training Accuracy (%)</th>
<th>Validation Accuracy (%)</th>
<th>Testing Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}}$</td>
<td>100</td>
<td>96.55</td>
<td>89.65</td>
</tr>
<tr>
<td>2</td>
<td>${y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}}$</td>
<td>100</td>
<td>96.55</td>
<td>93.10</td>
</tr>
<tr>
<td>3</td>
<td>${y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}}$</td>
<td>100</td>
<td>96.55</td>
<td>93.10</td>
</tr>
<tr>
<td>4</td>
<td>${y_3, y_4, y_5, y_6, y_7, y_8, y_9}$</td>
<td>100</td>
<td>96.55</td>
<td>93.10</td>
</tr>
<tr>
<td>5</td>
<td>${y_4, y_5, y_6, y_7, y_8, y_9}$</td>
<td>100</td>
<td>96.55</td>
<td>89.65</td>
</tr>
<tr>
<td>6</td>
<td>${y_5, y_6, y_7, y_8, y_9}$</td>
<td>100</td>
<td>96.55</td>
<td>86.20</td>
</tr>
<tr>
<td>7</td>
<td>${y_6, y_7, y_8, y_9}$</td>
<td>100</td>
<td>96.55</td>
<td>86.20</td>
</tr>
<tr>
<td>8</td>
<td>${y_7, y_8, y_9}$</td>
<td>100</td>
<td>96.55</td>
<td>86.20</td>
</tr>
<tr>
<td>9</td>
<td>${y_8, y_9}$</td>
<td>98.54</td>
<td>93.10</td>
<td>86.20</td>
</tr>
<tr>
<td>10</td>
<td>${y_9}$</td>
<td>94.89</td>
<td>89.65</td>
<td>89.65</td>
</tr>
</tbody>
</table>

Exhaustive search:

The main limitation of SFS pertains to the fact that it is unable to remove feature that become obsolete after the addition of other features. Similarly, SBS cannot reevaluate the usefulness a removed feature on the selected set (Weston et al., 2000). Both algorithms are suboptimal. Therefore, an exhaustive search algorithm was performed. It was decided to select the best 3 features that give the best classification accuracy. As the problem has 10 dimensions, the algorithm performed $C_{10}^3 = 120$ iterations in order to find the best set of 3 features. One the best obtained sets that gives the best accuracy is:

$$S_{optimal} = \{y_4, y_7, y_9\}$$

(49)

The detection rate for the training, validation and testing data are equal to 100%, 96.55% and 93.10%, respectively. Fig. 58 displays the confusion matrixes. A confusion matrix is a table that
displays the performance of the classification. The rows represent the predicted class and the columns represent the actual class. As observed from the confusion matrixes, only 2 patterns were misclassified in the testing set and 1 pattern in the validation set. The obtained optimal smoothing parameter was 0.01.

Figure 58. Confusion matrixes for the best features selected by the exhaustive search method
The new set of features based on the data fusion model has enhanced the performance of the detection rate from 13.79 % to 93.1 % on the testing set. This new set of predictors was inspired form the conventional z-score function which is based on the average and standard deviation of a group (class) of patterns. These parameters describe the mean and the standard deviation of a certain class. Fig. 60 shows the distribution of the optimal set patterns. As seen in this figure, the classes are more separable compared to the initial input feature vectors.
4.4. Uncertainty Analysis

In this work, the sensor data was simulated using the strain history provided by the FE modeling of the pavement under different damage scenarios. However, different sources of uncertainties can contribute to the increasing of the error between the FE modeling and the real structural behavior (Haukaas and Gardoni, 2011). On this basis, an uncertainty analysis can enhance the reliability of the proposed damage detection approach. To this aim, the input data was polluted using a Gaussian noise with 5 different levels: 10%, 20%, 30%, 40% and 50%. The best set of predictors S_{optimal} was used in the noise pollution verification phase. Thereafter, the PNN was run for the different noise levels. For each case, the optimal smoothing parameter was calculated. Table 6 presents the results of the uncertainty analysis. Fig. 61 displays the detection rate accuracy as a function of the noise level using the optimal smoothing parameter. As seen in Table 5 and Fig. 61, the performance of the models remains satisfactory up to a 30% noise level. The detection rates for a noise level below or equal to 30% are above 82% for all of the training, validation and testing sets.

Table 6. The damage detection performance for various noise levels using the optimal set of features

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>Optimal smoothing parameter</th>
<th>Damage Detection Performance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training</td>
</tr>
<tr>
<td>10%</td>
<td>1E-2</td>
<td>100</td>
</tr>
<tr>
<td>20%</td>
<td>1E-2</td>
<td>100</td>
</tr>
<tr>
<td>30%</td>
<td>1E-2</td>
<td>100</td>
</tr>
<tr>
<td>40%</td>
<td>1E-1</td>
<td>87.59</td>
</tr>
<tr>
<td>50%</td>
<td>1E-2</td>
<td>100</td>
</tr>
</tbody>
</table>
5. Summary and Conclusions

This work presents a new approach for pavement health monitoring based on a self-powered surface sensing technology. The self-powered sensors operate by harvesting the strain energy from the host structure and recording the cumulative droppage of the strain. Each sensor has seven memory gates for data storage. Each gate has an activation threshold level from which the sensor starts recording the cumulative droppage of the strain. Moreover, each gate has a specific injection
rate which controls the speed of the variation of the strain (strain droppage) at a specific timeframe. These injection rates can be modified by adding load resistance on the sensor interface board depending on the nature of the application. The difference between the previously used sensors is the variability of the injection rates between the gates which makes the interpretation of the sensor data more complicated. Therefore, a new strategy was proposed for data fitting and interpretation of the trends. The main focus is on the detection of bottom up cracking in the AC pavements using sensors located near the surface of the layer. In particular, such surface sensing technology is important for the monitoring of existing pavements. In order to verify the performance of the proposed method, 3D FE models of the pavement structure were created using ABAQUS. Subsequently, the principal strain time histories were extracted for different sensing nodes on the surface of the AC layer. The pavement was subjected to a dynamic moving load at highway speed. The models incorporated the tire-pavement contact stress, a viscoelastic behavior for HMA, an elastic behavior with damping for base and subgrade, and a continuous moving load. The moving load was created via a DLOAD subroutine using a FORTRAN code. Thereafter, different damage scenarios were introduced to the bottom of the AC layer. The damage states were defined based on the EWM by reducing the material properties of the damaged area. The FE results show that the strain amplitude changes as a function of the damage state. In addition, the locations of sensors with respect to the damage control the change in the strain amplitude. The sensor output was calculated based on the FE strain history. Based on the results, it was found that the damage could be detected through the strain droppage of the sensor gates. Only the sensors at a specific location with respect to the damage location were sensitive to the damage progression. To tackle this problem, two different stages were considered for the performance verification of the proposed approach. At the first stage, the complicated histogram of sensor data was fitted by a bi-modal GM
model in order to define initial damage indicators. The results show that the bi-modal GM parameters are good damage indicators only at specific locations. Thus, a data fusion model was proposed by defining new descriptive features from the GMM parameters. These new predictors contained the information supplied by the all the sensors at each specific sensing location. Thereafter, different feature extraction methods (SFS, SBS, Brute force) were used to check the curse of dimensionality and to select the optimal set of sensors that give the best accuracy. A PNN classification scheme was used to classify the predefined damage stages. The results showed that using the optimal set of predictor features could provide satisfactory detection rate accuracy (100% on the training data, 96.6% on the validation data and 93.1% on the testing data). Finally, an uncertainty analysis was performed to simulate the performance of the sensor under real operating conditions and to take into account the errors of the numerical modeling. A Gaussian noise with different levels was applied to the data. The detection performance remained satisfactory up to 30% noise level. While the proposed approach has provided sound results, there are still some challenges to be addressed in the future studies:

- The conducted analyses were based on discrete damage states, while cracking is a continuous phenomenon in reality. Hence, developing FE models with continuous damage propagation can result in a more realistic detection approach.
- The effect of high or low temperatures on the sensor output needs more research.
- Reliability of the sensor under different environmental and operating conditions should be evaluated more in-depth.
- Verification of the long-term performance of the proposed approach for a real-life structure is also an interesting topic for the future study.
References

Wang, H., 2011. Analysis of tire-pavement interaction and pavement responses using a decoupled modeling approach, PhD Dissertation in Civil Engineering, The Graduate College of the University of Illinois at Urbana-Champaign.

