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Executive Summary 

  

The planning and execution of pavement maintenance and rehabilitation (M&R) projects are 

essential for highway and transportation agencies to manage a sustainable transportation 

infrastructure system. In maintenance operations, obtaining limits of homogeneous sections is a 

crucial problem because appropriate segmentation is fundamental for a more efficient and cost-

effective M&R plan. To date little attention has been paid to highway segmentation. Only a handful 

of research studies are available on this topic and there is heavy reliance on empirical approach 

and personnel experience. Moreover, many of these studies focused on the cumulative difference 

approach (CDA) method and its modification. This method is deterministic and cannot provide the 

basis for statistical inferences. Although highway segmentation is a critical element in pavement 

management and maintenance operations, practitioners, to date, still rely on simple and subjective 

approaches to obtain manageable sections. Therefore, during this research study, the authors aimed 

at developing a novel and more objective highway segmentation method. The main objective of 

this study was to develop and propose a Hidden Markov Model-based highway segmentation 

method using pavement performance data. A secondary objective was to demonstrate the practical 

application of the proposed method. In this framework, the authors conducted a thorough literature 

review reviewing and evaluating previous research studies that focused on the segmentation of 

highway pavements. Thereafter, the authors performed an analysis with simulated data and real-

world data drawn from TxDOT’s most recent pavement condition database, Pavement Analyst 

(PA). In addition, during this research study, off-the-shelf tools available for detecting change 

points and compared the results of implementation with the CDA method were evaluated and 

compared. As a result, the authors recommended a segmentation approach using Hidden Markov 

Models (HMMs) as a prospective method for highway management operations. With simulated 

and real data, the method was tested to demonstrate its benefits as compared to the CDA method. 

Finally, a Bayesian-based approach to estimate HMM parameters was introduced, which can be a 

remedy to overcome issues that arose in the maximum likelihood estimation. The method was used 

to analyze the results of the application of HMM segmentation to identify M&R project limits with 

IRI and rut depth differences over time. 
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Chapter 1.  Introduction 

1.1 Motivations of Segmentation 

Pavement maintenance and rehabilitation (M&R) is essential for transportation agencies to have a 

sustainable transportation infrastructure. Generally, pavement maintenance consists of various 

routine and preventive activities such as filling cracks, patching, and applying chip seals, with the 

primary goal of enhancing the riding experience of drivers and preserving pavement performance 

by slowing down the damages caused by traffic loads and the environment. Pavement 

rehabilitation, which includes actions such as overlay and partial to complete reconstruction, 

focuses on increasing the structural capacity of pavement. 

The sheer size of road networks makes M&R a major investment in a transportation system. 

Accordingly, planning pavement M&R projects is a significant challenge for decision-makers not 

only because they must plan to spend a massive amount of money but also because they need to 

determine which road sections need to be treated and when, as well as which treatment should be 

applied, while taking into account budget limitations. The decision-making process must meet 

specific goals for maintaining pavement performance while also allocating budgets to maximize 

cost-effectiveness (Haas et al. 1994). 

To increase the efficacy of this complex process, the Texas Department of Transportation 

(TxDOT) began using the Pavement Management Information System (PMIS) in the early 1990s 

to support overall pavement management and the related decision-making processes; PMIS was 

used for storing, retrieving, analyzing and reporting information (Stampley et al. 1995). 

PMIS managed data collection in half-mile interval sections. The half-mile section is useful to 

estimate overall pavement condition and maintenance needs at the network level. At the 

administrator level, this broad evaluation is helpful for goal setting and budget planning; however, 

at the DOT district level, the half-mile section data are restrictive, especially for M&R project 

selection, because projects typically involve longer sections, so it was necessary to aggregate 

multiple half-mile sections with similar properties to arrive at a workable project length.  

In 2016, as TxDOT implemented a new pavement management system—Pavement Analyst 

(PA)—they began to keep even more detailed pavement performance data, such as roughness and 

distresses at one-tenth-of-a-mile intervals (Hong et al. 2017). Since the 0.1-mile sections are even 

shorter than the half-mile segments of PMIS, there remains a need for a method to aggregate the 

short sections into a manageable segment systemically so that one can plan M&R projects 

effectively. For that reason, obtaining the limits of homogeneous sections becomes a key problem 

in pavement management. 

Scullion and Smith (1997) presented three options for selecting the limits in such a task: 

1. use control sections that were designed and constructed under identical 

conditions.  

2. use the limits proposed by pavement engineers.  
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3. use the cumulative difference approach (CDA) (AASHTO 1993) to delineate 

sections based on changes of a particular pavement performance index, such as 

ride or condition scores (Scullion and Smith 1997).  

Although the researchers suggested feasible options to identify the management sections, each 

approach has its own limitations. The first option involves the control sections, which were created 

at the time of planning for the construction of a highway. While these sections were most likely 

homogeneous initially, they are not guaranteed to remain homogeneous after years of being 

subjected to multiple M&R treatments on different segments at different times within a control 

section. In practice, M&R projects may be conducted on only partial sections where treatment 

actions are required due to different distress conditions, traffic loads, or environmental reasons. 

Also, once some sections within the same control section have had different treatment actions (e.g., 

chip seal for one section, thick asphalt overlay for another section, and so on), each section might 

have structural differences such that the rates of performance deterioration differ significantly. 

Thus, the control sections are not suitable for selecting the limits of homogeneous sections.  

In the case of the second option, defining limits using engineering judgment is too demanding for 

area engineers to cover the large road networks in TxDOT districts. In addition, this process is 

quite subjective, so that the section limits set by one engineer might not be consistent with those 

set by another engineer.  

As for the last option, although CDA is a straightforward and effective method to divide a highway 

section into several segments, throughout numerous studies researchers have agreed that CDA has 

some limitations in finding homogeneous sections. These limitations are discussed in Chapter 2. 

Since there is no universal method for obtaining homogenous management sections—either in 

Texas or elsewhere in the U.S.—further investigation is needed to establish a systematic 

segmentation method with universal criteria to find homogeneous sections appropriately. 

Bennett (2004) presented three categories of segmentation methods: fixed-length segmentation, 

dynamic segmentation, and static segmentation. In the case of fixed-length segmentation, segment 

limits originate from fixed features and are kept constant over time. The previously mentioned 

approach of determining segment limits using control sections is one example of fixed-length 

segmentation. As for the dynamic segmentation, determining the segment’s boundaries is based 

on the homogeneity of pavement sections’ attributes, such as ride quality and condition. In this 

setting, the boundaries vary as the attributes change over time. Static segmentation is similar to 

dynamic segmentation, except the limits of segments are kept for a specific period to simplify 

management. For efficient M&R operations, static segmentation based on a three- to five-year 

span is more advantageous than other segmentation approaches because this approach allows for 

most of the benefits of dynamic segmentation while maximizing manageability (Bennett 2004). 

An appropriate segmentation can yield more cost-effective M&R plans. Figure 1.1 is a good 

illustration of the advantage of having a proper segmentation. Let us assume a decision-maker uses 

the median value of the attribute—International Roughness Index (IRI)—to determine which parts 

of the sections need treatment actions. Then it becomes a task to identify a segment that has a 

median value that exceeds a predetermined threshold. If one defines a single segment that contains 

candidate sections as a whole, a maintenance activity must be applied to the whole pavement 
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section regardless of changes in pavement conditions, i.e., the IRI values across the sections. As 

shown in the middle of Figure 1.1, because the median of IRI values for the whole section is under 

the threshold, none of the candidate sections is subject to treatment. This may result in higher costs 

in the long term since the pavement sections fail to benefit from properly timed maintenance 

action. Conversely, if one properly identifies two homogeneous segments “A” and “B” as shown 

in the bottom of Figure 1.1, segment “A” would be treated because it exceeds the median IRI 

threshold. On the other hand, segment “B” would not be treated because its median is less than the 

threshold value. In this sense, an appropriate segmentation leads to cost-effective planning by 

identifying the proper maintenance intervals for those segments demanding maintenance action. 

 

Figure 1.1: The effect of an appropriate segmentation (adapted from Bennett 2004) 

 

As another example, Figure 1.2 demonstrates a situation where a DOT handles discrete data to 

manage their system as well as take advantage of dynamic segmentation. A DOT might have a 

project limit based on previous M&R work history on candidate sections. In the case of using the 

aforementioned fixed-length segmentation or static segmentation strategy, the DOT would keep 

the historical project limits without choosing to re-evaluate condition ratings for finding updated 

section limits, as shown in Figure 1.2(a). The historical project limits do not bisect sections with 

homogeneous pavement conditions, as the pavement sections may experience different traffic 

loads or have unknown maintenance history. Figure 1.2(b) presents the segment ratings resulting 

from taking the average of each discrete section’s rating. We can observe that some parts in the 

first segment, which do not require maintenance actions because the overall condition rating does 

not exceed the threshold, would be treated; however, some sections in the second segment would 

not be treated even if their conditions indicated the need for treatment.  In other words, by not 

updating segment limits dynamically, a DOT would be failing to apply cost-effective M&R plans.  



4 

 

Figure 1.2: The advantage of a dynamic segmentation (adapted from Yang et al. 2009) 

 

Under a better segmentation scheme, the two segments would become three segments with 

homogeneous pavement conditions, as shown in Figure 1.2(c). The resulting segmentation makes 

it possible to be cost-effective by planning M&R activities only on sections where treatment is 

actually needed (Yang et al. 2009). 

1.2 Hidden Markov Models 

The hidden Markov models (HMM) (Baum et al. 1970) comprise a statistical model that has been 

significantly successful in modeling time series or spatial data since they were developed. HHM 

applications are very common, especially in automatic speech recognition (Rabiner 1989), but 

their use has expanded to other areas because HMMs are a relatively simple yet very powerful 

means to handle the dynamic behavior of data. HMMs have been applied to a wide range of 

research fields, such as diverse forms of automated recognition, bioinformatics, environment, 

finance, biophysics, and ecology (Zucchini et al. 2017). 

HMM applications have been used in multiple areas of transportation engineering, such as in traffic 

prediction (Qi and Ishak 2014; Wang et al. 2015), driving behavior prediction (Li et al. 2016; Zou 

and Levinson 2006), autonomous driving (Kaplan et al. 2010; Song et al. 2016), and vehicle 

recognition (Miller et al. 2015). In the pavement management area are a few studies (Kobayashi 

2010; Kobayashi et al. 2012; Lethanh and Adey 2012, 2013) related to the prediction of pavement 

deterioration. However, no study has been found that used HMM for the purpose of highway 

segmentation. 
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A Markov chain is a stochastic process that models transitions from one state to another according 

to a certain probability. HMMs are an expansion of the Markov chain model. Ordinary Markov 

chain models and HMMs are different in that the state sequence to corresponding observations is 

known for Markov chain models, whereas, for HMM, the states are unobservable, which means 

literally hidden, as its name reflects. The observations of HMM are generated from a probabilistic 

distribution of the hidden states, but the underlying state sequence is a hidden stochastic process 

(Rabiner 1989). Figure 1.3 illustrates the HMM structure. The state sequence 𝑌𝑖, which is hidden, 

follows a transition probability, and each state generates observation 𝑋𝑖 from an emission 

probability. More details will be discussed in Chapter 3. 

 

Figure 1.3: Illustration of HMM structure 

 

HMMs are more flexible because they lift the restriction of the observable state sequence; 

furthermore, they are more realistic because the observations are not assumed to be independent 

but conditionally independent. Based on an observation sequence, HMMs can provide a solution 

for the most probable sequence of states, which can be used as a method for segmentation. 

1.3 Objectives 

To date little attention has been paid to the highway segmentation problem. Only a handful of 

research studies are available on this topic. Moreover, many of these studies focused on the CDA 

method and its modification, which cannot provide statistical inferences. Although the 

segmentation problem is a critical element in pavement maintenance operations, practitioners to 

date still rely on simple and subjective approaches to obtain manageable sections. Therefore, this 

research seeks to explain the development of a novel highway segmentation method. The main 

objective of this study is to propose an HMM-based highway segmentation method using 

pavement performance data. A secondary objective is to demonstrate the practical application of 

the proposed method. In this framework, we conducted a thorough literature review and analysis 

with simulated data and real-world data drawn from TxDOT’s most recent pavement condition 

database, Pavement Analyst (PA). It is hoped that the suggested methodology makes an essential 

contribution to the field of pavement asset management. 
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The remainder of this document is organized as follows. Chapter 2 presents the result of a literature 

review regarding research studies focused on the segmentation of highway pavements. Also, we 

explore off-the-shelf tools available for detecting change points and compared the results of 

implementation with the CDA method. In Chapter 3, we suggest a segmentation method using 

HMMs as a prospective method for highway management operations. With simulated and real 

data, the method was tested to demonstrate its benefits as compared to the CDA method. In Chapter 

4, a Bayesian approach to estimate HMM parameters is introduced. The proposed method can be 

a remedy to overcome issues that arose in the maximum likelihood estimation presented in the 

previous chapter. Chapter 5 analyzes the results of the application of HMM segmentation to 

identify M&R project limits with IRI and rut depth differences over time. Chapter 6 summarizes 

and concludes this study along with the suggestion of future work. 
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Chapter 2.  Literature Review 

2.1 Segmentation Methods for Pavement Management 

Through the literature review on segmentation methods for application in pavement management,  

only a relatively small body of literature was found that is concerned with pavement segmentation 

studies for developing an approach to identify homogeneous segments. This section presents some 

of the findings from the literature review. 

2.1.1 Cumulative Difference Approach 

The cumulative difference approach (CDA) seems to be the most popular method for highway 

segmentation because the method was introduced in the American Association of State Highway 

and Transportation Officials (AASHTO) Pavement Design Guide (AASHTO 1993) that is used 

worldwide. The AASHTO guide states that the CDA method is straightforward and powerful 

(AASHTO 1993). 

Figure 2.1 illustrates the overall concept of the CDA method. In the top portion of Figure 2.1 are 

three unique constant values, 𝑟1, 𝑟2, and 𝑟3, with three intervals 0 to 𝑥1, 𝑥1 to 𝑥2, and 𝑥2 to 𝑥3, 

respectively. The cumulative area at 𝑥, the solid line in the middle figure, can be calculated as the 

following integral: 

𝐴𝑥 = ∫ 𝑟1

𝑥1

0

𝑑𝑥 + ∫ 𝑟2

𝑥

𝑥1

𝑑𝑥 

Also, the cumulative area of the average project response, 𝐴𝑥, depicted by a dashed line in the 

middle portion of the figure, can be calculated by using total project length 𝐿𝑃 and total 

cumulative area 𝐴𝑇 as follows: 

𝑟 =
∫ 𝑟1

𝑥1

0
𝑑𝑥 + ∫ 𝑟2

𝑥

𝑥1
𝑑𝑥

𝐿𝑃
=

𝐴𝑇

𝐿𝑃
 

Then, the cumulative difference variable 𝑍𝑥 is determined. In the third portion of the figure, 𝑍𝑥 is 

illustrated as the difference between cumulative areas at 𝑥. 

𝑍𝑥 = 𝐴𝑥 − 𝐴𝑥 

When 𝑍𝑥 is plotted over the length of a project, as illustrated in the bottom part of the figure, the 

boundary location can be determined at the location where the slope of 𝑍𝑥 changes, for example, 

from negative to positive or vice versa (AASHTO 1993). 
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Figure 2.1: Concept of cumulative difference approach (adapted from AASHTO 1993) 

 

Although the CDA method has the advantages of simplicity and applicability for segmentation, 

various research studies have identified and discussed the limitations of the CDA and suggested 

modified procedures for CDA or new methods. For example, Misra and Das (2003) presented the 

limitations of CDA as follows. In the case when more than one homogeneous sections with 

different mean levels consecutively exist above or below the mean horizontal line, the CDA fails 

to delineate those sections because the sign of 𝑍𝑥 does not change. Also, they mentioned that CDA 

has no control over the number of homogenous sections, and minimum section length cannot be 

chosen by the user. They suggested the classification and regression trees (CART) algorithm 

(Breiman et al. 1983) as an alternative method. 

Divinsky et al. (1997) recommended a modification of the CDA procedure by taking into account 

statistically homogeneous scatter characteristics, such as standard deviation and range, to 

overcome the limitation of significant sensitivity to changes in the mean levels of segments. 

Ping et al. (1999) introduced a procedure for automated segmentation of pavement rut data using 

CDA. They developed a program that performs the iterative process with resulting segments from 
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the previous pass to obtain sub-segments until the program produces the same segments as the 

previous pass. In the program, two user-specified constraints, such as a minimum segment length 

and a minimum difference in mean, are incorporated (Ping et al. 1999). Kennedy et al. (2000) 

conducted the CDA on IRI data with a similar procedure as the study of Ping et al. and found that 

the use of such constraints helps produce an adequate number of segments. Cafiso and Di Graziano 

(2012) also developed a similar iterative procedure referred to as MINSSE (Cafiso and Di Graziano 

2012) and they compared performances of the CDA to that of the iterative method using two 

constraints as in the aforementioned study. The study concluded that the CDA method fails to 

identify some significant changes, but the proposed method detects a majority of change-points 

successfully. 

Thomas (2005) argued that the CDA is primarily a graphical method to detect the homogeneous 

sections, and it is not suitable for narrowly spaced measurements. Also, the CDA always suggests 

at least two segments unless all measurements in a given series are identical. Thomas introduced 

a Bayesian approach that will be presented in the next section. 

2.1.2 A Bayesian Approach 

Thomas (2003) presented a method to detect a change in the mean, in the variance, and/or in the 

autocorrelation of a series using a Bayesian approach that allows communicating the existence and 

possible location of a change-point in terms of probabilities. The author emphasized that the 

method requires no prior knowledge and distributional assumption. Later, Thomas (2005) 

introduced a Box-Cox transformation to meet the normality assumption of observations, and a 

heuristic algorithm to detect multiple change-points to overcome the limitation of at most one 

change-point algorithm, which means the algorithm can detect none or only one change-point at a 

time. These two studies were based on his dissertation (Thomas 2001). Detailed statistical proofs 

are presented in the thesis, so here we introduce the basic concept of his Bayesian approach. 

A general Bayesian approach to determine change-point is introduced in Thomas’s thesis as 

follows. A sequence of random variables, 𝑥1, … , 𝑥𝑛, is divided into subsequences 𝑥1, … , 𝑥𝑟; 

𝑥𝑟+1, … , 𝑥𝑛 by a change-point r, where 1 ≤ 𝑟 < 𝑛. 𝑀0 indicates the model with no change in 

underlying parameters and its joint density can be expressed as 𝑝(𝑥1, … , 𝑥𝑛|𝑀0). Meanwhile, a 

model with change in one or more of the parameters at 𝑟 is denoted as 𝑀𝑟 and its joint density is 

𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟). Using Bayes theorem, the posterior probability of a model is the following: 

𝑝(𝑀𝑟|𝑥1, … , 𝑥𝑛) =
𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟)𝑝(𝑀𝑟)

∑ 𝑝𝑎𝑙𝑙 𝑟′ (𝑥1, … , 𝑥𝑛|𝑀𝑟′)𝑝(𝑀𝑟′)
∝ 𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟)𝑝(𝑀𝑟) 

Under this framework, two model comparisons are interesting. One is comparing the models 

𝑀1, … , 𝑀(𝑛−1) to specify that change in parameters occurs at 𝑟 = 1, … , 𝑛 − 1. Another is 

comparing some or all models that have a change at 𝑟 with 𝑀0 to test whether a change occurs at 

all. Two models, where change-point at 𝑟 and 𝑠, respectively, can be compared by following a 

Bayes factor. In general, Bayes factors provide a way of quantifying the evidence in favor of a null 

hypothesis based on the data. 
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𝑝(𝑀𝑟|𝑥1, … , 𝑥𝑛)
𝑝(𝑀𝑠|𝑥1, … , 𝑥𝑛)

𝑝(𝑀𝑟)
𝑝(𝑀𝑠)

=
𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑟)

𝑝(𝑥1, … , 𝑥𝑛|𝑀𝑠)
= 𝐵𝑟𝑠 

Comparing the hypothesis of no change versus a change in the series can be done using the 

following: 

1 − 𝑝(𝑀0|𝑥1, … , 𝑥𝑛)

𝑝(𝑀0|𝑥1, … , 𝑥𝑛)
/

1 − 𝑝(𝑀0)

𝑝(𝑀0)
= ∑ 𝐵𝑟0

𝑛−1

𝑟=1

𝑝(𝑀𝑟)

1 − 𝑝(𝑀0)
 

A Bayes factor, under the assumption that the numerator and the denominator are identical, can 

be interpreted using the guidelines given in Table 2.1 for interpreting Bayes factors. 

Table 2.1: Guidelines for interpreting Bayes factors (adapted from Jeffreys 1998) 

 

 

Although the Bayesian approach proposed is a statistically rigorous method that offers the 

segmentation results, an iterative process should be involved to obtain multiple change-points. 

Because the method identifies at most one change-point per iteration, it does not lead to the optimal 

solution for segmentation. 

2.1.3 Fuzzy C-Mean Clustering 

Yang et al. (2009) developed a spatial clustering algorithm using Fuzzy C-Mean clustering (FCM). 

The algorithm minimizes the pavement condition rating variation in each project while taking into 

account minimum length, costs, barrier, and pavement surface type of a project. In order to 

accomplish the goal, the algorithm uses two objective functions. One is for minimizing rating 

variation and the other is for minimizing costs for projects. Together with constraints, the optimal 

result can be achieved. The optimization process is repeated for the range of cluster numbers. 

Among the multiple results of optimal number of clusters, the best segmentation would be selected 

based on the cost objective function. 

 The left side of Figure 2.2 shows the partitions found when applying the FCM procedure to SR 

10 in Georgia, with five, six, seven, and eight clusters. The right side of the figure shows the 

associated cost for each segmentation. From this, we see that the best segmentation case is when 
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the number of clusters is equal to six, based on the minimizing cost criterion while satisfying all 

constraints. 

 

Figure 2.2: An example of optimal solutions for FCM algorithm (reprinted from Yang et al. 

2009) 

 

This method offers a way to cluster sections with the optimization scheme that includes 

construction costs. Thus, it provides a robust solution for combining unit length of individual PMIS 

sections into multiple homogenous segments. However, the proposed algorithm does not result in 

a global optimization, and cannot use multiple pavement performance ratings at the same time. 

Also, the method does not offer any statistical inference. 

2.1.4 Wavelet Transform 

An algorithm based on wavelet transforms for automated segmentation was presented by Cuhadar 

(Cuhadar et al. 2002). The properties of wavelet transform, such as de-noising and singularity 

detection, were used to delineate sections with respect to the pavement condition data. The original 

data is transformed into a smoother waveform by using de-noising, and then, singularity detection 

was applied on the smoothed data. The algorithm results in the pavement condition data being 

grouped into regions that have similar characteristics (Cuhadar et al. 2002). Boroujerdian et al. 

(2014) also used wavelet theorem for the dynamic segmentation of highway sections. In the study, 

based on the wavelet theory, the length of high crash road segments was identified by converting 

accident data to the road response signal. Wavelet transformation seems to outperform the CDA 

because this approach overcomes the sensitivity to small variability in the data by de-noising. 

However, the method of singularity detection seems able to identify only sudden changes in the 

level of univariate data. 

2.1.5 CART 

Misra and Das (2003) proposed a method using CART (Breiman et al. 1983). The algorithm 

produces a binary tree through the exhaustive search to find the point that minimizes the sum of 
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squared errors (SSE). By recursive binary splitting, the original tree is produced as shown in Figure 

2.3(a). Once the original tree is produced, based on a set of constraints, such as a minimum section 

length and a number of sections, the tree is reduced by merging divided sections in the original 

tree. In Figure 2.3(b), the resulting sub-tree is illustrated, indicating eight delineated sections. 

 

Figure 2.3: Example of the CART result: (a) original tree; (b) sub-tree (reprinted from Misra 

and Das 2003) 

 

The proposed algorithm provides a simple and fast solution for segmentation without any 

assumption on the distribution of data. The limitations of CDA are overcome by constraining the 

minimum section length and choosing the number of segments. Nonetheless, this approach also 

does not produce the optimal solution because it uses recursive binary trees as approximations. 

2.1.6 MINSSE 

Cafiso and Di Graziano (2012) introduced the minimum sum of squared error (MINSSE) method. 

The method relies on finding the minimal SSE of partitions as follows: 

𝑆𝑆𝐸𝑘 = ∑ ∑ (

𝑖∈𝑆𝑗

𝑘+1

𝑗

𝑥𝑖 − 𝑥𝑆𝑗
)2 

where, 𝑘 is the number of segments. 𝑆𝑗, a set of element in 𝑗𝑡ℎ segment. 

Once change-points are determined by minimizing the SSE under a given minimum segment 

length, t-tests are conducted to check if adjacent segments meet the criterion of a minimum 

difference and those segments are combined if the test fails. The authors compared the MINSSE 

with the CDA and the Bayesian approach (Thomas 2003) and concluded that their method resulted 

in similar segmentation to the Bayesian approach, although the method is less complex than the 

Bayesian approach. Figure 2.4 shows a comparative graph of these three approaches: CDA, 

Bayesian, and MINSSE using rut data. 
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Figure 2.4: Comparison of different segmentation method: CDA, Bayesian, and MINSSE 

(reprinted from Cafiso and Di Graziano 2012) 

 

2.1.7 Summary and Discussion 

The majority of the existing studies on segmentation focused on establishing highway 

segmentation based on pavement performance data, such as IRI, skid, and rut. Although several 

safety-related studies for highway segmentation have been conducted, only one of those studies, 

which is based on wavelet theorem, was mentioned because the analyses on crash count data have 

different characteristics than analyses on performance data. 

There seems to be general agreement on the limitations of the CDA. Some studies modified the 

CDA to improve it, while other studies suggested alternative methods that showed better 

performance. The developed methods commonly adopted constraints, such as minimum section 

length, minimum difference, and number of segments, to overcome the limitations of the original 

CDA. 

Most studies have focused on delineating segments based on the difference of mean levels between 

segments. Only the Bayesian approach by Thomas (Thomas 2001) has attempted to develop a 

method that takes into account variance and autocorrelation. In addition, no studies have explored 

multivariate data. For example, no method can perform segmentation based on rut and skid data 

simultaneously. Thus, it would be of interest to develop a method that can address some of the 

aforementioned gaps. 

2.2 Change-Point Detection Methods 

A change-point analysis is a process to identify the location where a change of the statistical 

properties of a sequence of time or spatial observation occurs. Various change-point detection 

techniques have been developed and applied to the fields of finance, bioinformatics, and image 

processing. This section explored two change-point methods readily available in R (R Core Team 

2018) and applied them to real pavement performance data to evaluate the feasibility in pavement 

management practice. Those methods are the Pruned Exact Linear Time (PELT) algorithm (Killick 
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et al. 2012), and a Bayesian change-point method by Barry and Hartigan (1993). These two test 

methods were tested and their performance was compared to that of the CDA algorithm. 

2.2.1 PELT Algorithm 

PELT is an algorithm for multiple change-point detections based on the maximum likelihood 

framework (Killick et al. 2012). The likelihood framework for a single change-point detection is 

a hypothesis test where the null hypothesis and the alternative hypothesis correspond to no change-

point and a single change-point, respectively. A test statistic of the likelihood ratio is constructed 

by the ratio between the maximum log-likelihoods under the null and alternative hypotheses. 

𝜆 = 2 [max
𝜏1

{log𝑝(𝑦1:𝜏1
|𝜃1) + log𝑝(𝑦(𝜏1+1):𝑛|𝜃2} − log𝑝(𝑦1:𝑛|�̂�)] 

where 𝑦1:𝑛 = (𝑦1, … , 𝑦𝑛) is a sequential data; 𝜏 ∈ {1, … , 𝑛 − 1} is a change-point. We reject the 

null hypothesis if the test statistic is greater than a threshold (𝜆 > 𝑐), then we can estimate a 

change-point, �̂�1, that maximizes the maximum log-likelihood under the alternative hypothesis. 

As an extension of the single change-point detection, there can be m change-points, 𝜏1:𝑚 =
(𝜏1, … , 𝜏𝑚). The multiple change-point problem consists of searching a combination of 𝜏1:𝑚 that 

maximizes the maximum log-likelihood of 𝜏1:𝑚. By adopting a cost function 𝐶 and a penalty 

𝛽𝑓(𝑚) to prevent over fitting, minimizing the following objective function solves the problem: 

∑ [𝐶(𝑦(𝜏𝑖−1+1):𝜏𝑖
)]

𝑚+1

𝑖=1

+ 𝛽𝑓(𝑚) 

The PELT algorithm provides an exact solution of the segmentation problem efficiently by using 

dynamic programming and pruning so that computational time increases linearly as data grows. 

The approach mentioned above has been implemented in the “changepoint” package (Killick et al. 

2016) that also offers other searching algorithms such as binary segmentation and segment 

neighborhood. These methods are available both for changes in mean and variance by using the 

assumption of either independent normal distribution or nonparametric cumulative sum (Killick 

and Eckley 2014). 

2.2.2 Bayesian Change-Point Method 

The “bcp” package is the implementation of the Bayesian change-point (BCP) procedure by Barry 

and Hartigan (1993). A probability distribution is provided in the Bayesian procedure instead of 

specific locations of change-points. 

Barry and Hartigan (1993) used the assumption that the observations are independent 𝑁(𝜇𝑖, 𝜎2). 

The assumption could be relaxed by assuming that the observations in different blocks are 

mutually independent, given partitions and parameters. Thus, the prior distribution of 𝜇𝑖𝑗 is drawn 

from 𝑁(𝜇0,
𝜎2

𝑖−𝑗
), where the block begins at 𝑖 + 1 and ends at 𝑗. There is a partition 𝜌 = (𝑈1, … , 𝑈𝑛), 

where 𝑈𝑖 = 1 if a change occurs at point 𝑖 + 1, if not 𝑈𝑖 = 0. By using the Monte Carlo Markov 
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Chain (MCMC) method, 𝑈𝑖 is drawn from the conditional distribution of 𝑈𝑖 given the data and the 

current partition, and the odds of a change-point at a position can be estimated as follows. 

𝑝𝑖

1 − 𝑝𝑖
=

𝑃(𝑈𝑖 = 1|𝑋, 𝑈𝑗 , 𝑗 ≠ 𝑖)

𝑃(𝑈𝑖 = 0|𝑋, 𝑈𝑗 , 𝑗 ≠ 𝑖)
 

Although dynamic programming can be used to solve the problem exactly, the solution is not 

practically feasible due to the complexity of the problem 𝑛(𝑂3). The MCMC implementation of 

the algorithm reduces the complexity to the order of 𝑛(𝑂2) and provides the posterior distributions 

of the change-points and the means. The package can be applied to both univariate and multivariate 

change-point analysis (Erdman and Emerson 2007). 

2.3 Case Study: Pavement Performance Data in Texas 

2.3.1 Data and Software 

The test data used in this analysis was selected from in-service highways in Texas. We considered 

the length of highway sections and the availability of attribute data extracted from TxDOT’s 

Pavement Management Information System (PMIS). Among available pavement attributes, such 

as condition score, distress score, ride score, and IRI, distress score was selected for the analysis. 

The distress score is an index that ranges from 0 to 100 and it is calculated by normalizing the 

multiplication of present utility values for individual distresses, including cracks, rutting, and 

patching. Each data point represents a half-mile-long section whose spatial coordinates are given 

in terms of Texas Reference Markers (TRMs). 

The software program used to analyze the data was R (R Core Team 2018). As for the CDA, a 

CTR team member built his own code based on the original description in AASHTO’s design 

guide (AASHTO 1993) instead of using the modified versions of the CDA proposed by other 

studies, which involve iterative procedures to automate and enhance the method. The PELT and 

BCP algorithms were implemented by off-the-shelf packages in R: ‘changepoint’ (Killick et al. 

2016) and ‘bcp’ (Erdman and Emerson 2007), respectively. In the case of these algorithms, the 

CTR team conducted a number of trials to be able to control some parameters until the best possible 

outcomes could be obtained. 

2.3.2 Analysis Results 

In Figure 2.5, we present one of the analysis results using the three different methods—CDA, 

PELT, and BCP—with the test data set of a state highway. The y-axis represents the distress score, 

and the x-axis represents the TRM. The vertical lines indicate segment borders with numbering. 

Those border lines were horizontally offset to the center of two neighboring points to identify 

which data points belong to a segment clearly. As a result, CDA, PELT, and BCP yielded 8, 18, 

and 12 change-points, respectively. In other words, 9, 19, and 13 homogeneous segments were 

identified. Some change-points were identical across the methods at some locations where 

noticeable changes occurred; however, each method shows the noteworthy differences in their 

properties. 



16 

 

Figure 2.5: Segmentation results with respect to the distress score of three different methods—

CDA, PELT, and BCP 

 

As for the CDA, the overall quality of the segmentation result seemed fair. This approach 

reasonably located the sudden changes in the data despite the fact that no pre- or post-process was 

carried out. Nonetheless the CDA revealed several limitations. In Figure 2.5, we can observe that 

the CDA identified a single data point as a segment between border number 4 and 5. When it 

comes to the project length, a half-mile section is too short to ensure cost-efficiency for an M&R 

project. For instance, if a decision-maker set the criteria of the minimum length of a project as one 

mile, considering mobilization costs, a single data point is not worth accepting as an isolated 

segment. In addition, the segment delineated by border numbers 5 and 6 consists of two data points 

significantly different each other. Even if the segment exceeds the minimum length criterion, the 

result suffers from non-homogeneity with respect to the distress score. In contrast, the CDA 

ignored small variabilities at several locations after border number 8, which is advantageous in 

terms of securing the minimum length by disregarding noise-like data. Note that there is a remedy 

for obtaining more consistent results via constraining the minimum length of a segment during 

post-processing, which is proposed in the modified versions of the CDA. However, we tested only 

the original algorithm during this study. In addition, we observed absurd borders, such as number 

2, 6, and 8, which make the corresponding segments contain a data point with unacceptably high 

distress score. This issue might be tolerable when each data point indicates a relatively small scale. 

For instance, if each data point represented 30 ft. (9 m) then a few erroneous points within a 
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segment would be acceptable as noise at network-level analysis. However, in the case of our test 

data, each point represents a half-mile (0.8 km) section. Therefore, small errors that occur in the 

analysis may lead to inefficient M&R planning. The results demonstrate that the CDA failed to 

produce sensible results for network-level application without further modified processes. 

The PELT algorithm also provided reasonable segmentation results. The algorithm requires at least 

two data points in a segment so that a single point segment did not occur. Furthermore, the outcome 

did not show any data point belonging to an awkward segment as the result of the CDA. However, 

as shown in Figure 2.5, border numbers from 7 to 18 show that the algorithm is sensitive to small 

variability and produced several segments that are not practically meaningful, although the result 

was obtained after applying a penalty and adjusting parameters to control sensitivity and to prevent 

overfitting. This can be attributed to the fact that the PELT algorithm can detect changes in 

variances as well as in means. 

As for the BCP, the overall quality of the segmentation was the most promising among the three 

algorithms, since the resulting segments seemed relatively homogeneous. However, a few single-

point segments arose due to the lack of a feature to constrain the minimum length of a segment. 

The locations of border numbers 4 and 12 were very similar to border numbers 2 and 8 of the CDA 

result; however, the BCP algorithm did not fail to allocate points around the border to the proper 

segment, unlike the CDA result. 

 

Figure 2.6: Properties of the BCP method: showing posterior probability 

 

Furthermore, thanks to the Bayesian property, the posterior probability of being a change-point 

can be estimated as shown in Figure 2.6. Therefore, one could capture the uncertainty of the 

segmentation result. For example, the last bump at around TRM 155 in the posterior probability 

plot in Figure 2.6 indicates that the probability of being a change-point is less than 50%. 

Accordingly, one can potentially judge whether or not a change occurs based on the probability. 

Moreover, posterior means and variances can also be estimated. As Figure 2.6 shows, the posterior 

means for each segment are indicated by a solid line. 

2.4 Conclusions 

The analyses reported in this chapter were performed to investigate the current segmentation 

techniques, thus providing a direction to develop an improved method. Two main aspects were 

addressed to achieve the objective: a literature review was conducted and a case study was 

performed. 
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The majority of the segmentation methods delineate segments by identifying one change-point at 

once and repeating the algorithm to detect more changes using the divided segments from the 

previous run. Even though additional adjustments are suggested as a remedy, this type of approach 

does not result in optimal multiple change-points. Although finding optimal solutions increases 

computational time, the power of modern computer systems and efficient optimization algorithms 

make it possible to obtain the global optima. Therefore, the developed methods should have the 

ability to identify the multiple homogeneous segments at once without losing optimality. 

Most studies have focused on delineating segments based on different mean levels of segments. 

Few studies have attempted to develop a method that takes into account changes in variance and 

autocorrelation. Pavement performance data might be autocorrelated by its very nature. That is, 

each observation is not independent but correlates to the adjacent one, so that the performance 

measure of current section has something to do with that of the next section. Thus, it would be of 

interest to develop a method that can take into account such correlation. In addition, few studies 

have explored multivariate data for pavement segmentation. Thus, it would be also interesting to 

develop a method that, for example, can conduct segmentation based on rut and skid data 

simultaneously. 

Throughout the case study of the CDA and two off-the-shelf packages in R, we evaluated and 

compared the qualitative performance of each method. Although the overall performances of three 

methods presented in this study seemed reasonable, the two change-point algorithms produced 

more reasonable results than the CDA. One benefit of a change-point analysis is that it controls 

the variability. Also, the change-point algorithms have features to prevent overfitting. Although 

the PELT and BCP could be implemented conveniently using the packages, establishing a 

tweaking process—by adjusting the penalty and parameters to obtain desirable segmentation 

results—is a challenging and subjective task. For both algorithms, the results are highly sensitive 

to those adjustable user inputs, but visual inspections after multiple runs are the only practical way 

to optimize the input values.  

The PELT algorithm can detect multiple changes in mean and variance but cannot employ 

multivariate data. As opposed to the PELT, the BCP does not offer variance change detection, but 

it can handle multivariate data analysis. Due to the nature of the Bayesian approach, the BCP 

algorithm gives not the location of change-points but the posterior probability of change-points at 

locations. This property is beneficial in terms of diagnosing the uncertainty of segmentations. 

However, a post-process is necessary to obtain change-point locations using a threshold value with 

respect to the posterior probability. This process introduces additional subjectivity to the 

segmentation results. Also, a potential problem of the BCP is that it would not produce identical 

results every time it runs because the segmentation results are obtained by the MCMC method. 

For gaining more consistent and rigorous results over multiple runs of the algorithm, proper 

MCMC settings are required, including an initialization, a burning, and the number of iterations. 

In conclusion, this chapter’s comparison should be treated with caution because the case study was 

conducted using a limited number of data points. Nevertheless, all aspects of the analyses point to 

the conclusion that each approach has limitations and an improved method for handling those 

limitations is needed. We suggest the following desirable properties of a segmentation method 

based on these findings:  
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• Detect multiple change-points simultaneously; 

• Provide optimal or near-optimal solution; 

• Detect changes in mean, variance, or autocorrelation; 

• Adjust sensitivity in terms of a change in parameters; 

• Control the minimum length of a segment; 

• Provide a measure of uncertainty; and 

• Handle multivariate data. 

In Chapter 3, Hidden Markov Models will be introduced as an alternative method for the 

segmentation that meets the aforementioned desired characteristics. 
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Chapter 3.  Segmentation Method using Hidden Markov Models 

This chapter introduces hidden Markov models (HMM) in the context of highway segmentation 

using performance measures. First of all, this chapter will define the essential components of 

HMM for pavement management application. This is followed by a review of the three problems 

to take in applying HMM to actual data. Finally, HMMs are illustrated by examples using 

simulated and real data, along with a comparison to the results of the CDA method. 

3.1 Hidden Markov Models 

A Markov model is a stochastic process used to solve problems in which condition states are 

observable. This process sometimes is too restrictive to model realistic scenarios in which states 

are not directly observable. For example, when modeling pavement performance, we cannot 

directly measure finite states of performance (i.e., good, fair, and poor); we can only estimate the 

performance through observable measures, such as roughness and different types of distresses. 

HMMs can be useful as an expansion of Markov models to obtain more flexibility. HMMs make 

it possible for each hidden state to generate observations (e.g., different distress types) according 

to a different probability distribution for each distress that depends only on a state. These 

probability distribution functions are referred to as emission probability. For example, we can think 

of a pavement’s current performance as a state, and each state produces roughness and distresses 

following different probability distributions. Figure 3.1 illustrates HMM for an application to 

pavement segmentation. 

  

Figure 3.1: HMM with three hidden states and continuous observations 

Rabiner (1989) referred to HMM as a doubly stochastic model, as one underlying stochastic 

process is not observable while the other process produces the sequence of observations. In Figure 

3.1, 𝑆 is a hidden state and 𝑂 is an observation at a pavement section. Such observations could be 

indications of roughness or different distress types. The model makes two major assumptions.  
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First, the current state depends entirely on the previous state, which is a property of a first order 

Markov chain. In Figure 3.1, the changes between the three hidden states, such as good, fair, and 

poor, occur by a transition probability following a Markov chain as follows: 

𝐴 = (

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

) = (
0.867 0.098 0.035
0.058 0.925 0.017
0.039 0.031 0.930

) 

where, A is a transition probability matrix for three states. An example transition matrix is 

presented on the right side. Each element indicates the probability of transition from one state to 

another. For instance, when we assume that state 1 is good, state 2 is fair, and state 3 is poor 

condition, 𝑝11 is the probability of transition from good state to good, 𝑝12 is the probability of 

transition from good to fair, and 𝑝13 is that from good to poor. The sum of 𝑝11, 𝑝12, 𝑎𝑛𝑑 𝑝13 should 

equal one to meet the Markov chain rule. In the example, if the current section’s state is good, the 

next section’s state is likely good, too, because the relatively low probability that a proximal 

section would transition from one state to another.  

Second, the observations are independent of each other, and depend only on the current state. An 

observation value (for example, roughness) can be drawn only from an emission distribution that 

depends on the hidden states, such that observations are spatially independent of previous 

observations and states. Therefore, a good state might evince less roughness than a fair or poor 

state, and the resulting roughness at the current section is independent of the roughness at the 

neighboring sections. This conditional independence of observations allows HMM to provide a 

more realistic model while retaining a relatively simple structure. 

3.1.1 Definitions of HMM Elements 

This section defines some essential elements of HMM as they are used in this study. Notations 

were adopted primarily from Rabiner (1989), with the exception of the substitution of time 

notation, 𝑡, with spatial notation, 𝑥, since spatial sequences (rather than time series) are of interest 

in this study. 

Note that the following definitions are based on the HMM with a finite number of discrete 

observations. HMM with continuous observations will be discussed later in this chapter. 

Number of hidden states in the model: 𝑁 

Hidden states: 𝑆 = (𝑆1, . . . , 𝑆𝑁); state at section 𝑥: 𝑞𝑥 

Observation sequence: 𝑂 = (𝑂1, . . . 𝑂𝑋) 

Initial state probability: 𝜋 = {𝜋𝑖}, where 𝜋𝑖 = 𝑃(𝑞1 = 𝑆𝑖),  1 ≤ 𝑖 ≤ 𝑁 

Transition probability: 𝐴 = {𝑎𝑖𝑗}, where 𝑎𝑖𝑗 = 𝑃(𝑞𝑥+1 = 𝑆𝑗|𝑞𝑥 = 𝑆𝑖),  1 ≤ 𝑖, 𝑗 ≤ 𝑁 

Emission probability: 𝐵 = {𝑏𝑗(𝑂𝑥)}, where 𝑏𝑗(𝑂𝑥) = 𝑃(𝑂𝑥|𝑞𝑥 = 𝑆𝑗),  1 ≤ 𝑗 ≤ 𝑁 
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Parameter vector of HMM: 𝜆 = (𝜋, 𝐴, 𝐵) 

3.1.2 Three Problems of HMM 

Applying HMM to actual data involves three fundamental problems: evaluation, decoding, and 

learning. 

Evaluation: The first problem is computing the probability of the observed sequence 

produced by the model, using the forward and backward algorithm (Baum and Eagon 

1967; Baum and Sell 1968). The outcome of this step enables evaluation of the model 

given the presence of several competing models.  

Decoding: The second problem is finding the most probable path, given a set of 

observations, and thus reveal the hidden part of the model. One approach to completing 

this step is using the Viterbi algorithm (Viterbi 1967), as it results in the single best state 

sequence based on an observation sequence. 

Learning: The third problem is optimizing the model parameters for the given observed 

sequence. A maximum likelihood approach can help complete this step, using a special 

extension of the expectation-maximization (EM) algorithm (Dempster et al. 1977), called 

the Baum-Welch algorithm (Baum et al. 1970). 

Forward Algorithm 

To solve the first HMM problem (evaluation), we need to calculate the probability of an 

observation sequence, 𝑂, given the model parameters, 𝜆, i.e., 𝑃(𝑂|𝜆). Consider a fixed state 

sequence 𝑄 = (𝑞1, . . . , 𝑞𝑋); then the probability of the observation sequence 𝑂 for the state 

sequence 𝑄 is 

𝑃(𝑂|𝑄, 𝜆) = ∏ 𝑃(𝑂𝑥|𝑞𝑥, 𝜆) = 𝑏𝑞1
(𝑂1) ⋅ 𝑏𝑞2

(𝑂2) ⋅⋅⋅ 𝑏𝑞𝑋
(𝑂𝑋)

𝑋

𝑥=1

 

The probability of a state sequence Q can be written as 

𝑃(𝑄|𝜆) = 𝜋𝑞1
𝑎𝑞1𝑞2

𝑎𝑞2𝑞3
⋅⋅⋅ 𝑎𝑞𝑋−1𝑞𝑋

 

Our target probability, 𝑃(𝑂|𝜆), is obtained by the summation over all possible state sequences 𝑞 

of the joint probability of 𝑂 and 𝑄 as follows: 

𝑃(𝑂|𝜆) = ∑ 𝑃(𝑂|𝑄, 𝜆)𝑃(𝑄|𝜆)

𝑎𝑙𝑙 𝑄

= ∑ 𝜋𝑞1
𝑏𝑞1

(𝑂1)𝑎𝑞1𝑞2
𝑏𝑞2

(𝑂2) ⋅⋅⋅ 𝑎𝑞𝑋−1𝑞𝑋
𝑏𝑞𝑋

(𝑂𝑋)

𝑞1,...,𝑞𝑋
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The calculation of the above probability is not feasible because there is a significant number of 

𝑎𝑙𝑙 𝑄. When the length of a sequence is 𝑋, then calculations are needed on the order of 2𝑋𝑁𝑋. A 

dynamic programming algorithm, the forward-backward procedure (Baum and Eagon 1967; Baum 

and Sell 1968), provides an efficient means to obtain the solution. 

Consider the joint probability of the partial observation sequence from the beginning to a specific 

section 𝑥 and state 𝑆𝑖 at section 𝑥 as the forward variable: 

𝛼𝑥(𝑖) = 𝑃(𝑂1 ⋅⋅⋅ 𝑂𝑥, 𝑞𝑥 = 𝑆𝑖|𝜆) 

The above variables can be expressed inductively as follows: 

Initialization: 

𝛼1(𝑗) = 𝜋𝑗𝑏𝑗(𝑂1),     1 ≤ 𝑗 ≤ 𝑁 

Induction: 

𝛼𝑥(𝑗) = ∑ 𝛼𝑥−1(𝑖)𝑎𝑖𝑗

𝑁

𝑖=1

𝑏𝑗(𝑂𝑥),     1 ≤ 𝑗 ≤ 𝑁,   1 ≤ 𝑥 ≤ 𝑋 

Termination: 

𝑃(𝑂|𝜆) = ∑ 𝛼𝑋(𝑖)

𝑁

𝑖=1

 

The output needed for the evaluation procedure can be obtained by recursive calculations of the 

forward variable (i.e., use of the forward algorithm), as shown in the above steps. In this dynamic 

programming algorithm, a forward variable in the previous iteration is used for the next iteration 

until the algorithm terminates with the solution. 

Viterbi Algorithm 

To solve the decoding problem, the Viterbi algorithm (Viterbi 1967) is used to  calculate the most 

probable state sequence 𝑄, given a sequence of observations and the corresponding model 

parameter 𝜆. 

To find the single best state sequence, we need to define the quantity 𝛿𝑥(𝑗)—that is, the highest 

probability (the best score) along a single path that accounts for the first 𝑥 observations and the 

end state, 𝑗, given the model 𝜆. 

𝛿𝑥(𝑗) = max
𝑞1,⋅⋅⋅,𝑞𝑥−1

𝑃(𝑞1 ⋅⋅⋅ 𝑞𝑥−1, 𝑂1, , 𝑂𝑥, 𝑞𝑥 = 𝑆𝑗|𝜆) 
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We can compute this Viterbi path probability recursively by using the previous probability; the 

backtracking array, 𝜓, is obtained as 

𝛿𝑥(𝑗) = max
𝑁

𝑖=1
𝛿𝑥−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑥)

𝜓𝑥(𝑗) = argmax
𝑖=1

𝑁
𝛿𝑥−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑥)

 

The Viterbi algorithm is very similar to the forward algorithm. Unlike the summation that is used 

in the forward algorithm, max is used in the Viterbi algorithm. The algorithm terminates with the 

best probability 𝑃∗ and the state at the end of section 𝑋, 𝑞𝑋
∗  for backtracking all path recursively. 

Thus, we obtain the most probable state sequence as a result. 

𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒:  𝑃∗ = max
𝑁

𝑖=1
𝛿𝑋(𝑖)

𝑇ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔:  𝑞𝑋
∗ = argmax

𝑖=1

𝑁
𝛿𝑋(𝑖)

𝑇ℎ𝑒 𝑏𝑎𝑐𝑘 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔:  𝑞𝑥
∗ = 𝜓𝑥+1(𝑞𝑥+1

∗ ),  𝑥 = 𝑋 − 1, 𝑋 − 2,⋅⋅⋅ ,1

 

Baum-Welch Algorithm 

The third HMM application problem (learning) involves estimating the model parameters, 

including transition and emission probabilities. The standard algorithm for the solution is the 

forward-backward algorithm, also called the Baum-Welch algorithm (Baum et al. 1970). This is a 

special case of the EM algorithm (Dempster et al. 1977). 

Firstly, we need to introduce the backward variable, which is the probability of the partial 

observation sequence from a section 𝑥 + 1 to the end, given state 𝑆𝑖 at section 𝑥 and the model 

parameters 𝜆: 

𝛽𝑥(𝑖) = 𝑃(𝑂𝑥+1 ⋅⋅⋅ 𝑂𝑋|𝑞𝑥 = 𝑆𝑖, 𝜆) 

Similar to the forward algorithm, the backward algorithm is computed inductively as follows: 

Initialization: 

𝛽𝑋(𝑖) = 1,     1 ≤ 𝑖 ≤ 𝑁 

Induction: 

𝛽𝑥(𝑖) = ∑ 𝑎𝑖𝑗𝑏𝑗(𝑂𝑥+1)𝛽𝑥+1(𝑗)

𝑁

𝑗=1

,     1 ≤ 𝑖 ≤ 𝑁,   1 ≤ 𝑥 ≤ 𝑋 
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Termination: 

𝑃(𝑂|𝜆) = ∑ 𝜋𝑗𝑏𝑗(𝑂1)𝛽1(𝑗)

𝑁

𝑗=1

 

By using both forward and backward probabilities, we now can begin to see how to estimate the 

transition probability as: 

�̂�𝑖𝑗 =
expected number of transitions from state 𝑆𝑖 to state 𝑆𝑗

expected number of transitions from state 𝑆𝑖
 

The numerator can be obtained by summation over all section x to the joint probability of being in 

state 𝑖 at section 𝑥 and state 𝑗 at section 𝑥 + 1, given the observation sequence. The joint 

probability is obtained as: 

𝜉𝑥(𝑖, 𝑗) = 𝑃(𝑞𝑥 = 𝑆𝑖, 𝑞𝑥+1 = 𝑆𝑗|𝑂, 𝜆)

=
𝛼𝑥(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑥+1)𝛽𝑥+1(𝑗)

∑ ∑ 𝛼𝑥(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑥+1)𝛽𝑥+1(𝑗)𝑁
𝑗

𝑁
𝑖

 

The denominator of �̂�𝑖𝑗 can be calculated by summation over all transitions out of state 𝑖 as: 

�̂�𝑖𝑗 =
∑ 𝜉𝑥(𝑖, 𝑗)𝑋−1

𝑥=1

∑ ∑ 𝜉𝑥(𝑖, 𝑘)𝑁
𝑘=1

𝑋−1
𝑥=1

 

Similarly, we can estimate the emission probability (when observations are of discrete nature) as: 

�̂�𝑗(𝑣𝑘) =
expected number of times in state 𝑗 and observing symbol 𝑣𝑘

expected number of times in state 𝑗
 

The numerator is the sum of the following probability over all section length x in which the 

observation is 𝑣𝑘. 

𝛾𝑥(𝑗) = 𝑃(𝑞𝑥 = 𝑆𝑗|𝑂, 𝜆)

=
𝑃(𝑞𝑥 = 𝑆𝑗 , 𝑂|𝜆)

𝑃(𝑂|𝜆)

=
𝛼𝑥(𝑗)𝛽𝑥(𝑗)

𝑃(𝑂|𝜆)

 

As for the denominator, we need to sum 𝑔𝑎𝑚𝑚𝑎𝑥(𝑗) over all sections 𝑥. 
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𝑏�̂�(𝑣𝑘) =
∑ 𝛾𝑥(𝑗)𝑋

𝑥=1 𝑠.𝑡.𝑂𝑥=𝑘

∑ 𝛾𝑥(𝑗)𝑋
𝑥=1

 

In the EM algorithm, we first initialize the transition and emission probabilities, and then calculate 

𝛾𝑥(𝑗) and 𝜉𝑥(𝑖, 𝑗) using the forward and backward probabilities in E step. Next, the HMM 

parameters are estimated as an M step. These EM steps are iterated to update the parameters until 

they converge in terms of log-likelihood. 

Note that this maximum likelihood approach converges only to a local maximum rather than the 

global maximum. The initialization of the EM procedure plays a critical role in dealing with this 

limitation. 

3.1.3 Continuous Observation HMM 

The previous section presented methods to solve the three problems to effective HMM application, 

based on the scenario that observations comprise finite discrete values. To apply HMM to the task 

of pavement segmentation, we have to deal with observations with continuous values. Therefore, 

we need to consider a different form of the emission probability. 

Typically, an emission probability of this setting is assumed to be a Gaussian distribution. A 

general form of the emission probability is  

𝑏𝑗(𝑂) = 𝑁(𝜇𝑗, 𝑈𝑗),     1 ≤ 𝑗 ≤ 𝑁 

where, 𝜇𝑗 is mean vector for the 𝑗𝑡ℎ state; 𝑈𝑗 is covariance matrix for the 𝑗𝑡ℎ state. 

In the EM procedure, parameter reestimation can be calculated thusly: 

�̂�𝑗 =
∑ 𝛾𝑥

𝑋
𝑥=1 (𝑗) ⋅ 𝑂𝑥

∑ 𝛾𝑥
𝑋
𝑥=1 (𝑗)

�̂�𝑗 =
∑ 𝛾𝑥

𝑋
𝑥=1 (𝑗) ⋅ (𝑂𝑥 − 𝜇𝑗)(𝑂𝑥 − 𝜇𝑗)′

∑ 𝛾𝑥
𝑋
𝑥=1 (𝑗)

 

where 𝛾𝑥(𝑗), the probability of being in state 𝑗 at section 𝑥, given observation 𝑂𝑥 

𝛾𝑥(𝑗) =
𝛼𝑥(𝑗)𝛽𝑥(𝑗)

∑ 𝛼𝑥
𝑁
𝑗=1 (𝑗)𝛽𝑥(𝑗)

 

Hence, in order to estimate HMM with L number of observable variables, the following L-

dimensional multivariate Gaussian distribution can be an emission probability: 

𝑏𝑗(𝑂) =
1

(2𝜋)𝐿/2|𝑈𝑗|1/2
exp (−

1

2
(𝑂 − 𝜇𝑗)′ 𝑈𝑗

−1 (𝑂 − 𝜇𝑗)) 
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3.2 Simulation Study 

The HMM method for segmentation was analyzed using simulated data, and the performance 

assessed by comparing it to the CDA method (AASHTO 1993). For HMM implementation, the 

MATLAB toolbox capable of analyzing Gaussian HMM, written by Kevin Murphy (Murphy 

2005), was used along with R for reporting results. For the CDA method, we used the same code 

written in R based on AASHTO (1993), as demonstrated in the previous chapter. 

A segmentation procedure using HMM was conducted as follows. Firstly, with a known number 

of states, the HMM parameters were estimated by the learning procedure as described in Section 

3.1.2, using the EM algorithm—also known as Baum-Welch algorithm (Baum et al. 1970). Once 

the EM procedure converges, as a next step, the most probable state sequence is calculated by the 

Viterbi algorithm (A. Viterbi 1967) using the estimated parameters. 

3.2.1 Local Variance 

To evaluate the performance of HMM with respect to a local variance, which is the variability 

within a state, we generated two data sets through a three-state HMM with state-dependent 

Gaussian distributions in which variances vary from low to high. In total, a thousand data points 

were generated per each data set. The states of two data sets were randomly switched across the 

data by the same transition probability, but different Gaussian distributions determined local 

variances. 

Figure 3.2 shows the results of CDA and HMM using the low local variance data. The mean levels 

of each state are obviously distinctive despite a small amount of noise within a segment. In the 

CDA result (top of Figure 3.2), a red vertical line indicates a segment border where state transition 

potentially happens. 

On the bottom of Figure 3.2, the HMM result is shown with mean levels and two standard 

deviations from the mean of each state as a line and shade area, respectively. This is one of the 

benefits of using the HMM method. It produces not only the boundaries of segments but also extra 

information regarding the distribution of a segment. 

As a result, both methods seemed to reasonably delineate the underlying states. However, the CDA 

result did miss several change-points where state transitions happened between the highest and 

medium levels. No such error occurred in the HMM results for the low local variance case. 

  



28 

 

 

Figure 3.2: Segmentation results of the low local variance data from CDA (top) and HMM 

(bottom) 

Figure 3.3 shows the results of the two methods tested using other data. This data set has the same 

state transition as the low local variance data but has higher local variances within a segment. 

Nonetheless, the changes in mean levels are still readily apparent; the result from the CDA method 

demonstrates that the method is so sensitive to the local variance that an excessive number of 

segments were detected incorrectly. In contrast, the HMM approach correctly conducted the 

segmentation without any significant error. 

 

 

Figure 3.3: Segmentation results of the high local variance data from CDA (top) and HMM 

(bottom) 

In the previous chapter, it was mentioned that one limitation of the CDA method is the high 

sensitivity to a local variance; the analysis with the simulated data verifies this limitation. Even in 
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such a trivial case with low local variance, the CDA method could not identify the true segments, 

missing some change-points. In the case of the high local variance, the opposite result arose. Too 

many segments were detected by the CDA method. In sum, the CDA method does not have a 

control to adjust this sensitivity. The only remedy is an iterative procedure to split or merge the 

resulting segments until the best fit is found. On the other hand, the HMM approach provided 

correct segmentation regardless of the local variance level in the data. 

3.2.2 Variance Detection 

Another comparison between the CDA and the HMM approaches was conducted to confirm that 

the HMM method has the ability to detect variance changes between states while the CDA does 

not. Another thousand synthetic data points were generated from three Gaussian distributions with 

identical means and different variances. 

As shown in the top of Figure 3.4, since the CDA method is not capable of detecting variance 

changes at all, that method produced a significant number of change-points. 

Meanwhile, the HMM could perfectly find the true segments, as the bottom of Figure 3.4 

illustrates. As expected, the HMM method could provide the estimated means and variances of 

states. 

 

 

Figure 3.4: Segmentation results of the variance-change data from CDA (top) and HMM 

(bottom) 

There is no remedy for the CDA method to detect variance changes because it takes into account 

only the cumulative changes in values. However, HMM can detect variance change as well as the 

mean level changes. Hence, one can identify the underlying states differentiated in terms of mean 

and variance of observations. 
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3.2.3 Multivariate Analysis 

Using a multivariate Gaussian distribution as an emission probability of HMM, we can conduct a 

segmentation that involves multiple variables at once. This can be a solution for the analysis to 

obtain highway segments by using different measures—for example, roughness, rut depth, and 

cracking all at once. 

As shown in Figure 3.5, three series of data were generated. Two data series were created using 

the same hidden state sequence: one with relatively high means and variables and another with 

relatively low means and variables. A series of random noise was created to test whether HMM is 

rigorous against noise. 

 

Figure 3.5: Simulated data with three states for testing multivariate case: high mean and 

variance (top), low mean and variance (middle), random noise (bottom) 

Figure 3.6 displays the data on the same scale and the result from the HMM with state-dependent 

multivariate Gaussian. The segment borders are not easily located with a visual inspection. By 

using three data series together (although one series with random noise would not help at all), it 

could be possible to detect the change-points identical to the ground truth, with the exception of 

one state at the end of data. 
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Figure 3.6: Segmentation results of the multivariate data: true segmentation (top) and HMM 

segmentation (bottom) 

3.3 Application to Real Pavement Data 

As an example of a real-world application for the HMM segmentation, following are the results of 

an analysis of one of the highways in the Austin District of TxDOT, State Highway 27 (SH0027 

K). Using IRI values from 2017, which were recorded in a 0.1-mile sections across the highway, 

univariate analysis using CDA and HMM were conducted as previously done with the simulated 

data. 

3.3.1 Comparison with the CDA Method 

Firstly, Figure 3.7 shows the results obtained from the CDA method when used on the real data. 

The solid black line indicates IRI measurements along the x-axis—distance from origin (or DFO, 

as shown in the figure)—in a mile. The vertical red lines are segment borders resulting from the 

CDA segmentation. 

Some resulting segments were reasonably identified, especially when sudden changes in IRI arose. 

Nevertheless, as noted in the simulation study covered in the previous sections, the CDA method 

is prone to deliver a significant number of segments due to its sensitivity to the local variance. 

Therefore, Figure 3.7 identifies many segment borders that have little practical use because of 

insufficient length. 
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Figure 3.7: Result of segmentation on the real data from CDA 

Even though the CDA method does not yield means and variances of each segment detected, for 

comparison purposes, the means of segments were calculated from the CDA result. In Figure 3.8, 

the two approaches are compared, and the red and blue lines indicate the mean of CDA and HMM 

segment, respectively. 

  

Figure 3.8: Comparison of the segmentation results of the real data: CDA (top) and HMM 

(bottom) 

Qualitatively speaking, the CDA results are not showing consistency—in some regions with high 

variability, overfitting seems to occur, but in other regions underfitting occurs as well. Hence, 

evaluating the overall quality of the segmentation is difficult. 

The bottom of Figure 3.8 presents the HMM segmentation result. Three states were defined for 

the model, allowing observation of three different means and the variances dependent on the states. 

The general quality of the HMM segmentation seems better compared to that of the CDA 

segmentation, although abrupt jumps in IRI value negatively affect the results, producing many 

short segments. 

As the HMM approach provides the estimation of the distribution parameters, we can 

quantitatively evaluate the segmentation result. The three states are normally distributed by the 

assumption of the model’s emission probability, as Figure 3.9 shows. State 3 has the highest mean 
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and variance and state 2 has the lowest mean and variance, as Figure 3.8 shows. Each state’s 

parameters and frequency are presented in Table 3.1. 

 

Figure 3.9: Distribution of each state from the HMM segmentation 

Table 3.1: The estimated parameters of each state from the HMM segmentation 

State Freq. IRI_Mean IRI_SD 

1 112 137.7 42.9 

2 359 56.9 11.4 

3 370 84.5 14.9 

 

3.3.2 Limitations of the HMM Method 

Number of States 

One of the limitations of the HMM method is that the number of states should be predetermined 

to learn the parameters. In a real-world situation, we typically do not know the number of hidden 

states. Figure 3.10 demonstrates the segmentation results based on five states and ten states. 

  

 

Figure 3.10: HMM segmentation results with 5 states (top) and 10 states (bottom) 
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As the number of states increases, the model’s accuracy increases, fitting the data better. In other 

words, the likelihood becomes higher as the number of states increases. When it comes to the 

maximum likelihood strategy, a model with a higher likelihood can be considered better. However, 

as shown in the case of 10 states in Figure 3.10, an inadequately large number of states might cause 

overfitting so that we cannot obtain the practically meaningful length of segments as a result. To 

avoid the problem, we need to select a proper number of states by criteria. The methods will be 

discussed in Chapter 5. 

Local Maximum 

The EM algorithm causes another critical limitation of the HMM method in the estimation 

procedure of model parameters. The EM method cannot guarantee the global maximum in terms 

of log-likelihood. The process obtains only a local maximum, and the accuracy of the results is 

dependent upon the initialization of parameters. 

Figure 3.11 presents one of the segmentation results from the same three states HMM. The top 

figure oddly seems to indicate that only two states exist even though three states were 

predetermined. The bottom figure shows the reason why this happened. The distributions of states 

2 and 3 overlap each other as if they are one. This result is from one of the local maximums in the 

iterations of the EM algorithm. Therefore, the log-likelihood of this solution is less than that of the 

model presented in Figure 3.8. 

  

Figure 3.11: HMM segmentation with a local maximum issue: segmentation result (top); state 

distribution (bottom) 

To resolve the issue, we need to estimate the HMM parameter multiple times until it reaches near-

global maximum. Again, Chapter 5 will provide more detail on this issue.  
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3.4 Summary and Discussion 

This chapter introduced use of HMM for the task of highway segmentation. HMM consists of two 

layers. The hidden layer is a sequence of unobserved states that explain another layer, the 

observation sequence. 

Highway segmentation using HMM can be achieved by estimating HMM parameters, such as 

transition probability and emission probability, through the EM algorithm. Then the Viterbi 

algorithm can be used to obtain the most probable state sequence, which can identify segments. 

A comparison between the CDA and the HMM approaches to both simulated and real data sets 

found that the HMM method is more advantageous, as the HMM approach is rigorous to a local 

variance, can detect variance changes as well as mean changes, and enables multivariate analysis. 

It cannot be concluded that CDA is always worse than HMM because CDA might present more 

advantages when used with other data sets. However, there is no control for adjusting the behavior 

of the CDA method in finding segments. Hence, HMM can generally produce better results 

regardless of data. 

Some limitations of using the HMM method were identified when applying HMM to real 

pavement data. One such limitation is the problem of remaining stuck in a local maximum during 

the EM estimation. To overcome this limitation and also to prevent short-length segments, which 

are not practical, we can use an alternative approach to estimate HMM parameters using a Bayesian 

framework, as will be presented in the next chapter. 
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Chapter 4.  Hidden Markov Models with a Bayesian Inference 

4.1 Introduction 

Chapter 3 presented a method using the Maximum Likelihood Estimation (MLE) approach for the 

estimation of HMM parameters. This chapter will discuss a different approach using Bayesian 

inference to estimate HMM parameters. 

In the MLE approach, a set of parameters �̂� is estimated by maximizing the likelihood 𝐿, which is 

𝐿(𝜆) = 𝑝(𝑂|𝜆)

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝜆𝐿(𝜆)
 

The EM algorithm can be used to find the HMM parameters that maximize the likelihood function, 

which offers a point estimate. Meanwhile, a Bayesian approach uses Bayes theorem, which 

factorizes the posterior distribution into the likelihood and the prior as follows: 

𝑝(𝜆|𝑂) ∝ 𝑝(𝑂|𝜆)𝑝(𝜆) 

Intuitively, by using a known parameter (prior) before observations are made, the Bayes theorem 

makes it possible to update the parameter to a new distribution based on the observations 

(posterior). Because the posterior distribution often cannot be solved analytically, sampling using 

a Markov Chain Monte Carlo (MCMC) algorithm can be employed to estimate the posterior 

distribution. Unlike the MLE approach, which provides a point estimate, a Bayesian estimator does 

offer probabilities of the parameters. Also, the existence of prior distribution can be beneficial, as 

it offers preferences for each parameter. 

The primary goal of this chapter is to suggest a Bayesian approach to estimate HMM parameters. 

Firstly, the proposed method will be explained, followed by examples using simulated and real 

data. Then some characteristics of the introduced method that can be beneficial to the highway 

segmentation application will be discussed. 

4.2 Method 

4.2.1 Markov Chain Monte Carlo (MCMC) 

MCMC is a sampling method driven by computers. The MCMC method makes it possible to 

characterize a distribution through random sampling from distributions without knowing the 

mathematical properties of them. MCMC comprises two components: the Monte Carlo approach 

and the Markov chain. A Monte Carlo approach is beneficial when random sampling from a 

distribution is easy enough to allow estimation of the properties of a distribution without analytical 

solutions. A Markov chain plays a role in a sampling sequence in that the next random samples 

are drawn from the current random samples. Further, the next samples depend only on the current 

ones—especially for a 1𝑠𝑡 order Markov chain (van Ravenzwaaij et al. 2018). 
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4.2.2 Gibbs Sampler 

The Gibbs sampler (Geman and Geman 1984) is an MCMC algorithm. This technique generates 

random variables from a distribution indirectly without calculating the density (Casella and George 

1992). The Gibbs sampler can be illustrated through this example application: obtaining a marginal 

density of a joint density 𝑓(𝑥, 𝑦1, . . . , 𝑦𝑝): 

𝑓(𝑥) = ∫ ⋅⋅⋅ ∫ 𝑓(𝑥, 𝑦1, . . . , 𝑦𝑝)𝑑𝑦1 ⋅⋅⋅ 𝑑𝑦𝑝 

When integrations are difficult or infeasible, the Gibbs sampler allows us to generate samples 

𝑋1, . . . , 𝑋𝑚 ∼ 𝑓(𝑥) without calculating 𝑓(𝑥). Thus, with a sufficient number of samplings, we can 

estimate the desired density. 

For instance, when there is a two-variable case with a pair of random variables (𝑋, 𝑌), the Gibbs 

sampler draws samples from the conditional distributions 𝑓(𝑥|𝑦) and 𝑓(𝑦|𝑥) iteratively in the 

following manner: 

𝑌0, 𝑋0, 𝑌1, 𝑋1, . . . 𝑌𝑘, 𝑋𝑘 

𝑋𝑗 ∼ 𝑓(𝑥|𝑌𝑗 = 𝑦𝑗)

𝑌𝑗+1 ∼ 𝑓(𝑦|𝑋𝑗 = 𝑥𝑗)
 

The Gibbs sampler draws samples for each parameter from the conditional distribution of the 

parameter. Thus, when we know the full conditional distributions, sampling using the Gibbs 

sampler is feasible. 

In the case of the HMM estimation, the Gibbs sampler can be divided into a few categories. Firstly, 

two sampling methods can be used for a state sequence: the pointwise and the blocked sampler. 

The pointwise sampler resamples a single state 𝑞𝑥 at a time, while the blocked sampler resamples 

a whole state sequence, 𝑞1, . . . , 𝑞𝑋, at a time by implementing dynamic programming such as the 

forward-backward algorithm. Secondly are the explicit and the collapsed sampler. The explicit 

sampler samples the HMM parameters explicitly together with states, while a collapsed sampler 

resamples only the states by integrating out the HMM parameters (Gao and Johnson 2008). 

In the course of implementing the Gibbs sampler, each pair of the Gibbs sampler categories, 

including a pointwise-explicit sampler, a pointwise-collapsed sampler, a blocked-explicit sampler, 

and a blocked-collapsed sampler, were examined by applying the methods to simulated and real 

data. The blocked-explicit sampler was selected for use in this study since the blocked-explicit 

sampler converges faster than a pointwise one. The Gao and Johnson study (2008) reported that 

the blocked-explicit sampler leads to faster convergence than the pointwise and collapsed ones. In 

the next section, a method to implement the blocked sampler, the Forward-Filtering Backward-

Sampling algorithm, will be introduced. 



38 

4.2.3 Forward-Filtering Backward-Sampling (FFBS) Algorithm 

This study’s Gibbs sampling procedure implemented the FFBS algorithm (Chib 1996; Frühwirth-

Schnatter 1994). This blocked sampling method helps MCMC mixes more rapidly than its 

competitor, the pointwise sampler (Scott 2002). FFBS outputs an independent posterior sample of 

the state sequence, given a sequence of observations and parameters. The algorithm utilizes the 

induction of the forward variable and backward variable, 𝛼 and 𝛽, from the forward-backward 

algorithm introduced in Chapter 3. 

The FFBS will be briefly described using the same definition of the HMM elements in Chapter 3. 

The description of the study from Rao and Teh (2013) is adopted as a reference. 

Define 𝛼𝑥(𝑖) = 𝑝(𝑂1 ⋅⋅⋅ 𝑂𝑥, 𝑞𝑥 = 𝑆𝑖); then we have the following recursion, 

𝛼𝑥(𝑗) = ∑ 𝛼𝑥−1(𝑖)𝐿𝑥(𝑖)𝑎𝑖𝑗

𝑁

𝑖=1

 

where, 𝐿𝑥(𝑖) = 𝑝(𝑂𝑥|𝑞𝑥 = 𝑖), a likelihood of an observation at a section, is given a state. 

Throughout the forward pass for 𝑥 = 1 → 𝑋, we obtain a vector: 

𝛽𝑋(𝑖) = 𝐿𝑋(𝑖)𝛼𝑋(𝑖) ∝ 𝑝(𝑞𝑋 = 𝑖|𝑂) 

Hence, 𝑞𝑋 can be sampled from 𝛽𝑋. Next, by the backward pass for 𝑥 = 𝑇 − 1 → 1, 

𝑝(𝑞𝑥 = 𝑖|𝑞𝑥+1 = 𝑗, 𝑂) ∝ 𝛽𝑥(𝑖) = 𝛼𝑥(𝑖)𝑎𝑖𝑗𝐿𝑥(𝑖) 

we can sample a state sequence (𝑞1, . . . , 𝑞𝑋−1) sussecively from 𝛽𝑥(𝑖). 

4.2.4 MCMC Procedure for HMM Segmentation 

In this study, the Gibbs sampler with a blocked-explicit approach is implemented by alternating 

between sampling a state sequence and sampling HMM parameters from their respective full 

conditional distributions. The sequence of the Gibbs sampler is as follows: 

1) Update a state sequence: sample a state sequence based on observations and parameters 

using FFBS 

2) Update parameters: sample parameters based on observation and the state sequence 

previously sampled 

As explained in the previous section, we first obtain a whole state sequence through the FFBS 

algorithm with initial HMM parameters and an observation sequence. Simply, a state sequence can 

be drawn from a conditional distribution, given an observation and the HMM parameters as: 

𝑞1, . . . , 𝑞𝑋 ∼ 𝑝(𝑞1, . . . , 𝑞𝑋|𝑂, 𝜆) 
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Secondly, to update the HMM parameters, we need to draw sample parameters from a conditional 

distribution, given a state sequence and an observation as follows: 

𝜆 ∼ 𝑝(𝜆|𝑞1, . . . , 𝑞𝑋 , 𝑂) 

Here, two HMM parameters, the transition parameter 𝐴 and the emission parameter 𝐵, should be 

sampled separately: 

𝐴 ∼ 𝑝(𝐴|𝑞1, . . . , 𝑞𝑋 , 𝑂, 𝐵) 

𝐵 ∼ 𝑝(𝐵|𝑞1, . . . , 𝑞𝑋 , 𝑂, 𝐴) 

In order to draw samples from each parameter’s conditional distribution, conjugate priors must be 

used. A conjugate prior for the likelihood function allows the posterior distribution to be the same 

distribution family as the prior. Therefore, with a known likelihood distribution, we can obtain the 

posterior distribution by choosing a proper conjugate prior. Then, sampling from the posterior 

distribution becomes possible. Table 4.1 shows the distributions of likelihood and conjugate priors 

to each HMM parameter. 

Table 4.1: Distribution of likelihood and conjugate prior for each HMM parameter 

Parameter Likelihood Conjugate Prior 

Transition Parameter A Multinomial Dirichlet 

Emission Parameter B Normal (known variance) Normal 

Emission Parameter B Normal (known mean) Inverse Gamma 

 

As for the transition parameter, the likelihood function follows a multinomial distribution, for 

which conjugate prior is a Dirichlet distribution. In the simple form, the transition parameter and 

its conjugate distribution can be expressed as follows: 

𝑞𝑥|𝑞𝑥−1 = 𝑞 ∼ 𝑀𝑢𝑙𝑡𝑖(𝐴) 

𝐴|𝛼 ∼ 𝐷𝑖𝑟(𝛼) 

where, a hyperparameter 𝛼 is a fixed uniform Dirichlet prior that controls the sparsity of the state-

to-state transition probabilities. 

Now, the posterior transition parameter can be drawn from a Dirichlet distribution as: 

𝐴 ∼ 𝐷𝑖𝑟(𝛼 + 𝑐) 

where, 𝑐 is the state-to-state transition counts—for instance, counting all leaving state 𝑞𝑥−1 = 𝑆𝑗 

to the current state 𝑞𝑥 = 𝑆𝑖. 
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For the emission parameter, since a normal emission probability is assumed as the likelihood, we 

need to estimate a mean and variance. Here, the mean and variance can be sampled separately from 

a normal distribution with known variance and a normal distribution with known mean. Each case 

has different conjugate priors, a normal distribution, and an inverse gamma distribution, 

respectively. Therefore, the updated mean and variance from the corresponding posterior 

distributions can be drawn alternately from the normal distribution and inverse gamma distribution 

as follows: 

𝐵𝜇 ∼ 𝑁 (
1

1
𝜎0

2 +
𝑛

𝜎2

(
𝜇0

𝜎0
2 +

∑ 𝑥𝑖
𝑛
𝑖=1

𝜎2
) , (

1

𝜎0
2 +

𝑛

𝜎2
)

−1

) 

where, 𝜇0 and 𝜎0
2 are hyperparameters of the normal prior, 𝑛 is the number of a specific state, 𝑥 is 

the observation corresponding to a state. 

𝐵𝜎2 ∼ 𝛤−1 (𝛼 +
𝑛

2
, 𝛽 +

∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1

2
) 

where, 𝛼 and 𝛽 are hyperparameters of the inverse gamma prior. 

All in all, the Gibbs sampler is conducted with the following order iteratively: 

1) update a state sequence 𝑞1, . . . , 𝑞𝑋 

2) update the transition probability 𝐴 

3) update the mean of the emission probability 𝐵𝜇 

4) update the variance of the emission probability 𝐵𝜎2 

5) iterate 1) through 4) 

4.3 Examples 

The HMM estimation using the aforementioned Gibbs sampler approach was implemented by 

writing a Python code. Meanwhile, data generation, processing, and result presentation were done 

using R. The example results from generated and real data are presented in this section. 

4.3.1 Generated Data 

Often, a numerical simulation is used to verify stochastic models. In order to compare the result 

from the EM estimation, the same generated data, for which variances are different while means 

are identical, were used. Figure 4.1 shows the generated data and the true segment limits 

represented by red vertical lines. These limits are considered the original segments for comparison 

with the estimated result of the HMM model. The Gibbs sampler proposed in the previous section 

was applied to the data. 
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Figure 4.1: Simulated data with different variances for three states 

Figure 4.2 presents the results of the MCMC procedure. The left portion of Figure 4.2 illustrates 

the sampling outputs of variances for each state. It can be observed that the variances rapidly 

converge after a relatively small number of iterations. 

In the right portion of Figure 4.2, the histogram of variances is plotted. As a result of using the 

Bayesian approach, we can obtain a distribution of parameters instead of a point estimate. In the 

original data, each state has standard deviation values 1, 4, and 16 for states 1, 2, and 3, 

respectively. The MCMC estimation of the standard deviations were 1.05, 4.04, and 16.10, which 

are very close to the ground truth. 

  

Figure 4.2: Variance changes over MCMC iterations (left); histogram of the estimated variances 

from the Gibbs sampler (right) 

Additionally, the Bayesian approach enabled to capture of the segmentation uncertainty. 

Therefore, we can also evaluate the segmentation result in terms of probabilities. Figure 4.3 shows 

how the MCMC method captures the uncertainty. A red line indicates two standard deviations 

from the mean. For each iteration of the MCMC procedure, a red line was added and superimposed 

onto the previous lines to generate the figure. Thus, we can visually confirm which segment is 

more probable than others by examining the thickness of the red lines. 
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Figure 4.3: Visualization of uncertainty by superimposing two standard deviations from the 

mean lines 

Figure 4.4 presents the segmentation results based on the MCMC estimation. Each color represents 

the three states. Red for State 1, green for State 2 and blue for State 3. Overall segmentation results 

are very close to the ground truth except for a few segments. In the bottom part of Figure 4.4, the 

probability of being a corresponding state can be visualized. We can observe that the probability 

is relatively low in the case of erroneous segments. Also, at the boundaries where the states change, 

the probability is lower due to the increase of uncertainty. 

 

Figure 4.4: Segmentation result from MCMC estimation with probabilities of a point belongs to 

the corresponding state 

4.3.2 Real Data 

As another example, we applied the HMM segmentation method using MCMC to the real-world 

pavement condition score data a highway in Texas, using the 140-mile-long State Highway 46. 

Figure 4.5 presents the results. Each point in the graphic represents the ride score per half-mile 

sections, as measured in 2016. 
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One of the issues we confronted when using the MLE approach to HMM segmentation is that we 

cannot set a minimum segment length. Thus, the algorithm results in a number of short segments, 

of little utility for practical use. Those short segments are produced when there is a sudden jump 

or drop in a pavement condition score at a location. Although it is not certain whether such sudden 

changes occur due to measurement error, a feature to control the short segment issue might be 

advantageous in practice. 

To prevent this problem, we incorporated a sticky parameter that forces a reduction in the state-

to-state transitions. The sticky parameter, which is a fixed value, is added to a hyperparameter of 

the Dirichlet prior that corresponds to the self transition probability. Because the non-uniform 

hyperparameter of the state 𝑖 determines the distribution of the Dirichlet, it results in a skewed 

distribution that the probability of transition from state 𝑖 to the same state 𝑖 is much higher than 

that of state 𝑖 to a different state. For example, with a three-state HMM, a set of the Dirichlet 

parameters for a state 𝛼 = (1, 1, 1) would result in fairly uniform transition probabilities while the 

non-uniform Dirichlet parameter 𝛼 = (10, 1, 1) may result in a very skewed distribution, for which 

the probability of transition from state 1 to state 1 is much higher than that of transition from state 

1 to state 2 or state 1 to state 3. 

The top part of Figure 4.5 depicts the segmentation results without using the sticky parameter. 

Several short length segments are caused by a sudden jump or drop in ride score. As a result of 

incorporating the sticky parameter, we can observe fewer too-short segments, which can be a more 

practical solution, as illustrated in the bottom half of Figure 4.5. 

 

 

Figure 4.5: Comparison of HMM segmentation results from (a) without a sticky parameter and 

(b) with a sticky parameter on the real data (ride score of SH0046 K) 

4.4 Discussion 

This chapter presented a Bayesian approach using the Gibbs sampler to estimate HMM parameters, 

providing analysis examples using the simulated and real data. When comparing use of the EM 

algorithm to the Gibbs sampling for HMM segmentation, both approaches result in reasonably 

good segmentation that can be useful in practice. 



44 

Therefore, in circumstances where only a point estimate is needed or using maximal likelihoods 

to obtain the best model is sufficient, then the MLE approach provides a more straightforward and 

quicker solution than the Bayesian approach. However, to estimate parameters with probability 

with the goal of obtaining the model with global optima, the MCMC method would be beneficial. 

When used with the simulated and real data, in a Bayesian context, the MCMC method tended to 

require more computation time to converge to the global optima. That is because the Bayesian 

approach involves difficulties such as a longer running time of the Markov chains for convergence, 

and sufficiently large samples drawn for accurate estimation. In contrast, the MLE approach 

required less computation time. However, the multiple estimations of HMMs, which require as 

much computation time as the MCMC method, were needed to obtain the best model in terms of 

the likelihood, as the global optima are not guaranteed in the MLE approach. 

Despite the extended computation time required, the MCMC method has some characteristics that 

benefit its use in practice. First of all, thanks to the Bayesian property, the MCMC method can 

capture the uncertainty of a segmentation result—which allows use of this uncertainty to evaluate 

the resulting segments. Secondly, with a proper number of iterations in the MCMC procedure, the 

global optimum can be achieved so that the most probable segmentation is provided. Lastly, 

because the MCMC approach is very flexible, we can control the minimum length of a segment 

by modifying the prior of the transition probability. Also, by using a specific prior for the emission 

probability, we can obtain the more favorable means of each state. For example, the condition 

score in TxDOT is categorized in five different levels: very good, good, fair, poor, and very poor. 

We can assign priors that correspond to the range of each level to produce five states for which 

mean values are close to the predefined range. 

The MCMC method does have some limitations. As mentioned earlier, the approach needs many 

iterations to converge so that bias caused by the starting values and Monte Carlo error can be 

negligible. Thus, the computation time for estimating a large network, like Texas highway 

networks, would be significant. In addition, determining the hyperparameter of the prior 

distribution is difficult. Since the results significantly depend on the value, they should be selected 

subjectively to obtain reasonably practical segmentation. 

There are several opportunities to further enhance the Bayesian approach for future work. A 

sensitive study should be done to explore the effect of prior selection for both transition and 

emission probability. By doing so, the minimum length of a segment and the mean of each state 

can be controlled in a more sophisticated way. Furthermore, a method to estimate the HMM using 

multivariate observations was not implemented in this study. Incorporating multiple measurements 

of ride quality and pavement condition simultaneously, a method using multivariate observations 

would provide more practical and accurate segmentation results. 
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Chapter 5.  HMM Segmentation for Identifying M&R Project 

History 

In the previous chapters, we suggested HMMs as a new method for the highway segmentation. 

This chapter presents the result of a practical application using the HMM models in maintenance 

operation. 

The effectiveness of a maintenance activity can be estimated in various ways. The simplest way is 

to compare the pavement performance before and after the maintenance activity. For instance, the 

difference in the IRI value before and after treatment can be a good indicator of how effective the 

treatment is, as shown in Figure 5.1. Having access to the work history, which indicates when and 

what treatment action was done on a pavement section, is essential for this estimation. However, 

an estimation may be required even when the work history is not recorded properly. In such a case, 

context clues can fill the information gap. For example, a significant drop in IRI or rutting 

measurements at a certain time can imply that some treatment actions would have been done.  

 

Figure 5.1: IRI measurements in 2017 and 2018 with project limits from work history on 

SH0361 K 

Identifying M&R project boundaries is a critical component of pavement management for 

maintaining pavements effectively. When M&R project histories are not readily available, 

segmentation can be useful to determine the project boundaries, given that some pavement 

performance measurements are collected annually. A segmentation model can detect the 

differences of measurements over time and give some insights about resulting segments. The 

HMM segmentation method can be used for detecting a difference between before and after a 

maintenance action to identify M&R projects. In this chapter, we provide a practical framework 

for work history detection with real pavement data. 

5.1 Framework 

Figure 5.2 shows a workflow for HMM segmentation to identify M&R project boundaries using 

multivariate data. First, data processing is needed to run the HMM segmentation. Then, a model 

is selected, including the variable and number of states that will be used in the model. The selected 

model will be evaluated after learning and decoding the HMM and the model selection procedure 
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might be repeated if necessary. Post processing will be considered to merge states and segments, 

thus reducing redundant states and ensuring the minimum length of segments.  

 

Figure 5.2: Flow chart for HMM segmentation framework 

5.1.1 Data Processing 

Whitening and Coloring Multivariate Data 

Data whitening is one of the typical transforming processes to make multivariate data applicable 

to statistical analysis. When dealing with multidimensional observations to be used in HMM, it is 

necessary to transform observation data into a form that can be handled in the model. 

The whitening transform is comprised of two main steps: decorrelation and scaling. Firstly, in the 

decorrelation step, the data is rotated such that it falls along the principal axes. This rotation 

removes the correlation between the components and results in a diagonal covariance matrix. 

Secondly, the scaling step squeezes or stretches the decorrelated data to make the unit variances. 

The resulting covariance matrix is identity. 

In the scope of pavement segmentation, the whitening plays a critical role because some variables 

used in the segmentation model are highly correlated; e.g., pavement distresses such as rutting and 

cracking are highly correlated at the same location. Therefore, there should be a remedy for the 

correlation problem that might cause numerical instability in the course of model estimation and 

the whitening transform is one of the remedies available. In addition to that, the scaling step is 

beneficial for using multiple measures at the same time with the same importance in segmentation 

due to the identical variances for all variables in the data. 
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In the remainder of this section, we present how to transform to whitened data and also present 

how to reverse the transform by coloring the data. 

Let 𝑋 be a multivariate Gaussian random vector with mean 𝜇 and covariance matrix 𝛴. The 

covariance matrix is calculated thusly: 

𝛴 = 𝐸[𝑋𝑋𝑇] 

The resulting covariance matrix can be decomposed as follows: 

𝛴 = 𝛷𝛬𝛷−1 

where 𝛬 is a diagonal matrix with the eigenvalues of 𝛴 and 𝛷 is the eigenvector. A random vector 

with a decorrelated multivariate Gaussian distribution can be obtained by the multiplication of the 

transposed eigenvector by the original vector 𝑋. 

𝑌 = 𝛷𝑇𝑋 

𝑌 has a diagonal covariance matrix with the eigenvalues. Thus, to scale to a standard multivariate 

Gaussian distribution, the following step must be taken. 

𝑊 = 𝛬−
1
2𝑌 

Now, 𝑊 has an identity matrix as its covariance matrix. 

The coloring process is the reverse of the whitening process. When one wants to obtain the original 

multivariate Gaussian distribution from the white noise data, the coloring process must be 

completed. 

Let 𝑆 be a random vector from a whitened distribution. We can reverse the scale of 𝑆 back to that 

of the original distribution by multiplying the square root of the diagonal matrix of the eigenvalues. 

𝑌 = 𝛬
1
2𝑆 

And 𝑌 is still the decorrelated data, so by rotating the data, we can obtain the correlated data again. 

𝑋 = 𝛷𝑌 

To illustrate what the whitening transform actually does to data, a thousand generated data points 

were sampled from the bivariate Gaussian distribution with 𝜇 = 0 and covariance matrix 

𝛴 = [
5 3
3 2

] 

Figure 5.3 shows the plot of the generated data from 𝑋 to 𝑌 to 𝑊. Figure 5.3(a) shows a scatter 

plot of the original samples. The shape of the linear relationship definitely presents strong 
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correlations between variables. By the eigenvectors of 𝑋 covariance, the decorrelated data 𝑌 can 

be found by rotating the original data to align it with the principal axes of the data as shown in 

Figure 5.3(b). The covariance matrix of 𝑌 proves that there is no correlation between components. 

Furthermore, this decorrelated data 𝑌 can become the whitened data 𝑊 by scaling each variance 

to unit one. Now the normalized data demonstrates a circular shape in the scatter plot, as can be 

seen in Figure 5.3(c), and the covariance matrix becomes an identity matrix, which was the desired 

outcome of the procedure. 

 

Figure 5.3: Scatter plots of bivariate Gaussian distribution. (a) Original, (b) Decorrelated, and 

(c) Whitened data 

The covariance matrices of the sample data changed as follows: 

(𝑎) [
5.50 3.28
3.28 2.14

] → (𝑏) [
7.50 0.00
0.00 0.14

] → (𝑐) [
1 0
0 1

] 

 

The aforementioned procedures are based on the assumption that the data is from multivariate 

Gaussian distribution. Also, whitened data needs to be centered about zero. To achieve a zeroed 

center, one can easily subtract the mean of each variable from the data points. Since real-world 

data is not always normally distributed, another transformation may be needed so that the data 

form  a normal distribution prior to apply the whitening transformation. 

5.1.2 Model Selection 

Selecting the Number of States 

Typically for comparing between models for evaluating which model is better than others, Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) are used.  

The likelihood is always improving as the number of states increases. However, if a large number 

of states is used for a model, overfitting is expected to occur. That is, there would be too many 

short-length segments, although the likelihood of a model is better. AIC and BIC penalize log-

likelihood by adding a penalty term to prevent this issue. Thus, a lower AIC or BIC value indicates 

a better model. Two criteria are as follows: 
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Akaike information criterion (AIC): 

−2log𝐿 + 2𝑝 

Bayesian information criterion (BIC): 

−2log𝐿 + 𝑝log𝑇 

where, 𝑝 = 𝑚2 + 𝑘𝑚 − 1 𝑚: number of states 𝑘: number of parameters. 

5.1.3 HMM Segmentation 

HMM learning and decoding can be done by using the MLE approach or the Bayesian method 

introduced in previous chapters. Here, we used the MLE approach to implement the segmentation 

method for identifying an M&R project. 

5.1.4 Post-processing 

Merging States 

For the purpose of identifying M&R projects, we can merge all other states except the state 

representing the M&R projects. On the other hand, if one wants to obtain both segmentation and 

project identification, we need to merge segments whose properties are similar to reduce redundant 

states. 

Merging Segments 

Once we have merged states, there will be short-length segments that are shorter than the minimum 

segment length required as an M&R project. For instance, the TxDOT experts consider one mile 

as the minimum length for a single project.  

By merging a short segment with an adjacent segment, the minimum length can be secured. We 

suggest merging those short segments, joining the neighboring segments in accordance with 

certain criteria, such as similar mean and variance level. 

5.2 Example 

5.2.1 Data Processing 

As an example, we applied the segmentation framework to real-life pavement data to identify 

M&R project sections. Since 2016, TxDOT has outsourced data collection to obtain pavement 

condition data using automatic and accurate methods at highway speed. A vendor measures 

roughness in IRI and distresses on the pavement by using technologies involving lasers and 

images, and reports the summarized values for 0.1-mile intervals such that each data point 

represents a section that is one-tenth of a mile. A data set most recently collected from 2017 to 

2018 in the Austin area, one of 25 districts in TxDOT, was used for this study. Since rut depth 

measurement was considered as a variable in the segmentation model, the data was filtered to 

include only asphalt concrete pavements. The TxDOT-maintained highway system in the Austin 



50 

District consist primarily of asphalt concrete highways, so this network size is suitable for the 

study. 

To process the data, highways were grouped by roadbed name, which entails a highway name and 

a label that indicates left or right lanes, and main or frontage roads for divided highways 

(e.g., IH0035 L refers to the left lanes of the Interstate Highway 35). Undivided highways were 

labeled with the letter “K”. The resulting group of highway roadbeds was divided into subgroups 

when there is a gap between data points greater than two miles within the same group of highway. 

Because the HMM segmentation assumes the dependency of neighboring sections, a hidden state 

of the next section depends on that of the current section by Markov chain. It is not reasonable that 

highway sections farther apart than two miles affect the performance of each other’s pavements. 

Other inventory information such as county and pavement type was not used for grouping, to 

prevent interference with the segmentation process from factors other than pavement condition. 

Within a grouped highway, we matched the identical 0.1-mile sections over two years based on 

location information—Distance From Origin (DFO)—such that the difference between two years 

at a specific DFO can be calculated. Sections with a missing measurement or ones that do not have 

pairs at a location over two years were discarded from the data set. Also removed were highway 

groups for which a center-line length was less than five miles, to secure an adequate number of 

data points per highway group. As a result, overall, the process yielded 2484.3 miles of 162 

highway groups. 

5.2.2 Variable Exploration 

Two measures, i.e, roughness in IRI and rut depth, were chosen to detect the M&R project 

boundaries. The values of IRI and rut depth are continuous, so the multivariate Gaussian 

distribution can be used as the emission probability of the HMM. Also, the fact that IRI and rut 

depth are not usually correlated is useful to accommodate the multivariate Gaussian distribution 

in the model. Figure 5.4(a) shows the scatter plot of the two measures in the processed data set. A 

slight positive correlation is observed between IRI and rut depth. The paired correlation was 

calculated as 0.19. 

  

Figure 5.4: Scatter plot of (a) Rut depth versus IRI; (b) 𝛥Rut depth versus 𝛥IRI 
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In order to identify an M&R project, detecting a meaningful change of values per each variable 

over a two-year period is important. The change of values, 𝛥 is defined as 

𝛥𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑡+1 − 𝐼𝑅𝐼𝑡;   𝛥𝑅𝑢𝑡 = 𝑅𝑢𝑡𝑡+1 − 𝑅𝑢𝑡𝑡 

where 𝑡 is time in year. 

Therefore, we can expect that sections with negative values less than a specific value in delta might 

have M&R project because both IRI and rut measurements decrease as a pavement section is 

improved. Whereas, sections with no M&R project might experience increases in the 

measurements. Also, we should consider errors involved in the data because of operation errors by 

human and equipment, and location differences over the years. Although 𝛥𝐼𝑅𝐼 and 𝛥𝑅𝑢𝑡 are 

independent, they might have relatively higher correlations since they would be both negative in 

the project sections. However, Figure 5.4(b) shows that there is no apparent high correlation 

between them. The correlation value was 0.31, which is higher than that between IRI and rut 

measurements. 

Figure 5.5 shows the histogram of 𝛥𝐼𝑅𝐼 and 𝛥𝑅𝑢𝑡. The distributions are almost symmetric with a 

single peak around zero. It was expected that the difference between two years of performances 

was not significant. In addition, we cannot expect left-skewed distributions because there might 

have been only a few M&R projects for two years. In Table 5.1, a mean and standard deviation of 

each variable is presented. The mean of 𝛥𝐼𝑅𝐼 is slightly negative and that of 𝛥𝑅𝑢𝑡 is positive; 

however, they are not statistically different from zero—that is, the overall changes in two variables 

are not so meaningful. 

  

Figure 5.5: Histogram of (a) 𝛥𝐼𝑅𝐼; (b) 𝛥𝑅𝑢𝑡 

Table 5.1: Mean and standard deviation values of 𝜟𝑰𝑹𝑰 and 𝜟𝑹𝒖𝒕 

ΔIRI Mean ΔIRI SD ΔRut Mean ΔRut SD 

-0.875 22.256 0.013 0.042 
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Another set of variables was considered for use in the model: the 2017 initial IRI and rut 

measurements, extracted from a two-year dataset. When a measurement of the previous year is 

higher, the difference of measurements before and after an M&R project might become greater. 

Also, by using those measurements as a variable, the model can detect segments incorporating the 

conditions of pavement sections in terms of IRI and rut depth. That means that we can obtain both 

project boundaries and highway segmentation simultaneously. Therefore, it is worth adding the 

initial values in the HMM. 

Figure 5.6(a) and (b) display the distribution of IRI and rut depth, respectively. They are both right-

skewed distributions, so log transformations were applied to them to make the distributions closer 

to normal distributions. As can be seen in Figure 5.6(c) and (d), the distributions do become closer 

to a normal distribution after the transformation. Q-Q plots per each distribution from (a) to (d) 

were drawn as shown in Figure 5.6(e) to (h) to check the normality, additionally. The log-

transformed variables have straighter lines in the Q-Q plots (f) and (h); that is, the normality is 

visually evident. 

 

Figure 5.6: Distributions of the initial IRI and rut depth. (a) IRI and (b) rut depth; (c) logIRI and 

(d) logRut; (e), (f), (g), and (h) Q-Q plots of before and after log transformation for IRI and rut, 

respectively 
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The normality is not a critical problem for the HMM itself because the normality assumptions are 

involved only when a hidden state emits the observations by determining the emission probability 

to a multivariate Gaussian. The reason for the transformation is the whitening process, in which 

the normality assumption is made. For multivariate analysis, as explained in the previous section, 

whitening is necessary to eliminate correlations between variables and standardize variables to 

make their scale the same. Thus, this linear transformation was also applied to the data set. Once 

the model produced results, they were unwhitened by a coloring process to be presented. 

Lastly, one more set of variables was considered. When IRI and rut are measured, a vendor collects 

the measurement on the left and right wheel paths separately. Typically, the right wheel path is 

prone to develop more damages over time, so that the measurements on the left and right wheel 

paths are expected to be different. Although the discrepancy is not significant, and the average 

value of both paths are used in practice, two new variables were created, 𝛥𝐼𝑅𝐼𝑑𝑖𝑓𝑓 and 𝛥𝑅𝑢𝑡𝑑𝑖𝑓𝑓, 

to accommodate this inevitable difference:  

𝐼𝑅𝐼𝑑𝑖𝑓𝑓 = |𝐼𝑅𝐼𝑙𝑒𝑓𝑡 𝑤ℎ𝑒𝑒𝑙 𝑝𝑎𝑡ℎ − 𝐼𝑅𝐼𝑟𝑖𝑔ℎ𝑡 𝑤ℎ𝑒𝑒𝑙 𝑝𝑎𝑡ℎ| 

𝛥𝐼𝑅𝐼𝑑𝑖𝑓𝑓 = 𝐼𝑅𝐼𝑑𝑖𝑓𝑓,𝑡+1 − 𝐼𝑅𝐼𝑑𝑖𝑓𝑓,𝑡 

𝑅𝑢𝑡𝑑𝑖𝑓𝑓 = |𝑅𝑢𝑡𝑙𝑒𝑓𝑡 𝑤ℎ𝑒𝑒𝑙 𝑝𝑎𝑡ℎ − 𝑅𝑢𝑡𝑟𝑖𝑔ℎ𝑡 𝑤ℎ𝑒𝑒𝑙 𝑝𝑎𝑡ℎ| 

𝛥𝑅𝑢𝑡𝑑𝑖𝑓𝑓 = 𝑅𝑢𝑡𝑑𝑖𝑓𝑓,𝑡+1 − 𝑅𝑢𝑡𝑑𝑖𝑓𝑓,𝑡 

 

If a section has a significant discrepancy in values between two wheel paths, the absolute 

difference between them would be greater than the one after an M&R treatment. Hence, we expect 

a negative 𝛥𝑣𝑎𝑙𝑢𝑒𝑑𝑖𝑓𝑓 for sections experience a treatment. 

In the next section, a variable selection process is outlined to determine which set of variables is 

more effective for the model. 

5.2.3 Model Selection with Partial Data 

A model selection process aims at two major aspects. One is to select variables to be entered into 

HMM; another is to select a proper number of hidden states for the HMM. For the model selection 

purpose, the ten longest highway groups in the full dataset and another two groups that show a 

visually obvious M&R project were selected as a partial dataset, which has 598.3 miles in total 

center-line length. For estimating the HMM parameters closed to the global optima, two hundred 

iterations of the EM procedure were performed per each variation of the model with different sets 

of variables and number of states. With the relatively smaller dataset with 12 highway groups, it 

was possible to run a significant number of models to evaluate and determine the optimal setup for 

the problem. 

Variable Selection 

The variable selection was explored with the three sets of variable combinations, including two, 

four, and six variables. Firstly, two variables, such as 𝛥𝐼𝑅𝐼 and 𝛥𝑅𝑢𝑡, assumed to be most 

important factors for detecting a project, were included in the model. An HMM with five hidden 
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states produced the segmentation result presented in Figure 5.7. The figure is a frontage road of 

the Interstate Highway 35 (IH0035 X). The IRI and rut values are displayed as lines, and each 

color and line type represents the measurements in corresponding year. On the x-axis, a color-

coded rectangular bar depicts the segmentation result. The bar is separated by colors located on a 

specific segment range; each bar color represents a hidden state. We can observe the State 3 is the 

most probable project segment located from approximately milepost 22 to 26 in DFO. That 

segment is placed where significant decreases in both variables are observed. It also can be seen 

in Table 5.2 that State 3 has the most negative means for both variables. Other states also have 

physical meaning. For instance, State 1 has negative means in 𝛥𝐼𝑅𝐼, but has a slightly positive 

mean in 𝛥𝑅𝑢𝑡. Therefore, State 1 has the potential to be recognized as a project. However, it should 

be noted that the result was obtained from only a portion of the full data that was used for this task. 

  

 

Figure 5.7: Segmentation result with 2-variable 5-state HMM on the partial data: (a) IRI; (b) rut 

depth (IH0035 X) 

Table 5.2: Estimated state parameters with 2-variable 5-state HMM on the partial data 

 

 

Secondly, four variables, such as 𝛥𝐼𝑅𝐼, 𝛥𝑅𝑢𝑡, initial IRI and rut depth, were included in the model 

to take into account the effect of initial measurement before an M&R construction. Also, we 

expected the model would offer a segmentation based on pavement condition as well as project 

boundaries. Figure 5.8 demonstrates the results of the four-variable model. Similar to the result of 
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the two-variable model, project segments were correctly recognized. This time, State 5 represents 

the project segment, unlike the previous model. Each state now has additional meaning in terms 

of the initial conditions of pavement, as is observable in Table 5.3. 

  

 

Figure 5.8: Segmentation result with 4-variable 5-state HMM on the partial data: (a) IRI; (b) rut 

depth (IH0035 X) 

Table 5.3: Estimated state parameters with 4-variable 5-state HMM on the partial data 
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Lastly, the result of the 6-variable model is presented in Figure 5.9 and Table 5.4. 

  

 

Figure 5.9: Segmentation result with 6-variable 5-state HMM on the partial data: (a) IRI; (b) rut 

depth (IH0035 X) 

Table 5.4: Estimated state parameters with 6-variable 5-state HMM on the partial data 

 

 

Since so far we evaluated the model results with one highway example, a look at overall 

segmentation quality is needed. Therefore, 2-D scatter plots with 𝛥𝐼𝑅𝐼 and 𝛥𝑅𝑢𝑡, which are the 

most important factors for the purpose of this study, were drawn for three models with the different 

number of variables, as shown in Figure 5.10. The result shows that the 2-variable and 4-variable 

models detect project segment well. However, the 6-variable model could not identify the states 

correctly. 
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Figure 5.10: 2-D scatter plots of 𝛥𝑅𝑢𝑡 vs. 𝛥𝐼𝑅𝐼 for 5-state models on the partial data: (a) 2 

variables; (b) 4 variables; (c) 6 variables 

Figure 5.10 (b) demonstrates that State 2 and State 4 overlapped, which means they are very similar 

in terms of the rut and IRI differences. The reason why there are two separate states can be 

observed in a 1-D plot for showing mean and variance of each state with respect to log rut depth 

(see Figure 5.11). The states of a 2-variable model cannot detect differences in log rut depth; 

however, the 4-variable model definitely differentiates states. Meanwhile, the 6-variable model 

failed to differentiate between states in terms of 𝛥𝐼𝑅𝐼diff, as shown in Figure 5.12. 

 

Figure 5.11: Density plots of logRut for 5-state models on the partial data: (a) 2 variables; (b) 4 

variables; (c) 6 variables 

 

 

Figure 5.12: Density plots of 𝛥𝐼𝑅𝐼𝑑𝑖𝑓𝑓 for 5-state models on the partial data: (a) 2 variables; (b) 

4 variables; (c) 6 variables 
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Number of States Selection 

In order to select the number of states of HMM segmentation, the Akaike's Information Criteria 

(AIC) and the Bayesian Information Criteria (BIC) were calculated for the number of states 

ranging from 3 to 15, as shown in Figure 5.13. The result of AIC indicates that nine is the optimal 

number of states. A BIC result is obtained in six states.  

Because there is no universal method to determine the number of states for HMM, we should 

consider not only the results from calculation of AIC and BIC but also from a practical point of 

view. In TxDOT, pavement condition is usually categorized into five classes (very good, good, 

fair, poor, and very poor). Thus, using five states can be an appropriate choice for both practical 

and analytical perspectives. 

 

Figure 5.13: AIC and BIC versus number of states 

5.3 Discussion 

This chapter presented an application of the segmentation method to identify M&R project 

boundaries using multi-attribute data. The method yielded very promising results with significant 

benefits—not only identifying the M&R project limits but also producing segmentation based on 

current pavement conditions by incorporating the initial value of condition measurements. 

There are several limitations of the framework. Because the MLE method was used to estimate 

HMM parameters, it does not guarantee the global optima when it comes to obtaining the 

maximum likelihood estimators. Therefore, multiple runs of the MLE process should be conducted 

to reach the near-optimal solution. Also, when the label switching problem occurs, we cannot 

obtain a state corresponding to M&R project segments with a consistent label. Furthermore, to 

ensure the minimum length of a segment is greater than a practical length, post-processing is 

required to merge some segments using somewhat subjective judgement. 

For future study, we suggest estimating HMM using the Bayesian approach presented in Chapter 

4 instead of using the MLE approach to obtain the global optima. In addition, the Bayesian 

approach can control the minimum length of segment such that it can minimize the involvement 
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of post-processing. Furthermore, since we used only a limited size of pavement data in the Austin 

area to demonstrate the framework, it is necessary to apply the method to more extended data. 
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Chapter 6.  Summary and conclusion 

Optimal planning of pavement maintenance and rehabilitation (M&R) activities is essential for 

highway and transportation agencies to manage a sustainable transportation infrastructure system. 

Pavement maintenance consists of routine and preventive activities such as filling cracks, patching, 

chip seal, thin overlays, microsurfacing, etc. Pavement rehabilitation includes actions such as thick 

overlays and partial to complete reconstruction that increase the structural capacity of pavement. 

Due to the size of road networks, M&R is one of the major investments in a transportation system. 

Accordingly, planning M&R and resource allocation are a major issue that challenges 

administrators and decision makers because they need to determine which pavement road section 

has to be treated and when, and how that treatment should be conducted. In addition, the decision 

making process must take into account budget limitations, meet specific goals for maintaining 

pavement performance, and allocating budgets to maximize cost effectiveness. Finally, other non-

engineering external factors also affect the decision process such as political-based decision, 

extreme weather events, last minute policy changes, etc. 

In the Texas Department of Transportation (TxDOT), pavement management systems have been 

operated since the early 1990s to support the pavement-related decision making processes by 

storing, retrieving, analyzing and reporting information. Currently, the information is managed in 

half-mile data collection unit sections in a new system known as Pavement Analyst (PA). This 

information can be analyzed to objectively support the decision making process such as condition 

estimation and maintenance needs estimation at the administrative state level. However, at the 

district level project selection, the half-mile section data are restrictive because typically projects 

are of any length, combining multiple half-mile sections. Therefore, instead of using the half-mile 

data collection section, aggregating several of these units into a “management section” consisting 

of homogeneous sections is necessary. For that reason, obtaining the limits (beginning and end 

points) of homogeneous sections becomes a key problem in pavement preservation and in 

pavement and maintenance management. Appropriate segmentation is required for optimal 

determination of the beginning and end points of the management sections and for a more cost 

effective M&R plan. Failure to do this will result in suboptimal resource allocation and therefore, 

waste of limited M&R funding. 

In this study, we reviewed and evaluated previous research studies focused on the segmentation of 

highway pavements. Also, we explored off-the-shelf tools available for detecting change points 

and compared the results of implementation with the CDA method. Then, we suggested a 

segmentation method using HMMs as a prospective method for highway management operations. 

With simulated and real data, the method was tested to demonstrate its benefits as compared to the 

CDA method. For overcoming some issues that arose in the maximum likelihood estimation of 

HMMs, a Bayesian approach to estimate HMM parameters was proposed. Throughout data 

analysis, we demonstrated  the application of HMM segmentation to identify M&R project limits 

with IRI and rut depth differences over time. 

The majority of the segmentation methods delineate segments by identifying one change-point at 

once and repeating the algorithm to detect more changes using the divided segments from the 

previous run. Even though additional adjustments are suggested as a remedy, this type of approach 

does not result in optimal multiple change-points. Although finding optimal solutions increases 
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computational time, the power of modern computer systems and efficient optimization algorithms 

make it possible to obtain the global optima. Therefore, the developed methods should have the 

ability to identify the multiple homogeneous segments at once without losing optimality. 

Most studies have focused on delineating segments based on different mean levels of segments. 

Few studies have attempted to develop a method that takes into account changes in variance and 

autocorrelation. Pavement performance data might be autocorrelated by its very nature. That is, 

each observation is not independent but correlates to the adjacent one, so that the performance 

measure of current section has something to do with that of the next section. Thus, it would be of 

interest to develop a method that can take into account such correlation. In addition, few studies 

have explored multivariate data for pavement segmentation. Thus, it would be also interesting to 

develop a method that, for example, can conduct segmentation based on rut and skid data 

simultaneously. 

Throughout the case study of the CDA and two off-the-shelf packages in R, we evaluated and 

compared the qualitative performance of each method. Although the overall performances of the 

three methods presented in this study seemed reasonable, the two change-point algorithms 

produced more reasonable results than the CDA. One benefit of a change-point analysis is that it 

controls the variability. Also, the change-point algorithms have features to prevent overfitting. 

Although the PELT and BCP could be implemented conveniently using the packages, establishing 

a tweaking process—by adjusting the penalty and parameters to obtain desirable segmentation 

results—is a challenging and subjective task. For both algorithms, the results are highly sensitive 

to those adjustable user inputs, so visual inspection after multiple runs is the only practical way to 

optimize the input values.  

The PELT algorithm can detect multiple changes in mean and variance but cannot employ 

multivariate data. As opposed to the PELT, the BCP does not offer variance change detection, but 

it can handle multivariate data analysis. Due to the nature of the Bayesian approach, the BCP 

algorithm gives not the location of change-points but the posterior probability of change-points at 

locations. This property is beneficial in terms of diagnosing the uncertainty of segmentations. 

However, a post-process is necessary to obtain change-point locations using a threshold value with 

respect to the posterior probability. This process introduces additional subjectivity to the 

segmentation results. Also, a potential problem of the BCP is that it would not produce identical 

results every time it runs because the segmentation results are obtained by the MCMC method. In 

order to achieve more consistent and rigorous results over multiple runs of the algorithm, proper 

MCMC settings are required, including an initialization, a burning, and the number of iterations. 

As a result of the literature review and comparison between the existing methods, this study 

suggested the following desirable properties of a segmentation method based on these findings:  

• Detect multiple change-points simultaneously; 

• Provide optimal or near-optimal solution; 

• Detect changes in mean, variance, or autocorrelation; 

• Adjust sensitivity in terms of a change in parameters; 

• Control the minimum length of a segment; 

• Provide a measure of uncertainty; and 
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• Handle multivariate data. 

To integrate these elements, we introduced use of HMM for the task of highway segmentation. 

HMM consists of two layers. The hidden layer is a sequence of unobserved states that explain 

another layer, the observation sequence. For instance, the hidden layer can be pavement 

performance of a road section, and the observation sequence can be a pavement distress such as 

rut and roughness. Highway segmentation using HMM can be achieved by estimating HMM 

parameters, such as transition probability and emission probability, through the EM algorithm. 

Then, the Viterbi algorithm can be used to obtain the most probable state sequence, which can 

identify segments. 

A comparison between the CDA and the HMM approaches to both simulated and real data sets 

found that the HMM method is more advantageous, as the HMM approach is rigorous to a local 

variance, can detect variance changes as well as mean changes, and enables multivariate analysis. 

It cannot be concluded, however, that CDA is always worse than HMM because CDA might 

present more advantages when used with other data sets. There is no control for adjusting the 

behavior of the CDA method in finding segments. Hence, HMM can generally produce better 

results regardless of data. 

Some limitations of using the HMM method were identified when applying HMM to real 

pavement data. One such limitation is the problem of remaining stuck in a local maximum during 

the EM estimation. To overcome this limitation and also to prevent short-length segments, which 

are not practical, we can use an alternative approach to estimate HMM parameters using a 

Bayesian framework. We presented a Bayesian approach using the Gibbs sampler to estimate 

HMM parameters, providing analysis examples using the simulated and real data. When 

comparing use of the EM algorithm to the Gibbs sampling for HMM segmentation, both 

approaches result in reasonably good segmentation that can be useful in practice. 

Therefore, in circumstances where only a point estimate is needed or using maximal likelihoods 

to obtain the best model is sufficient, then the MLE approach provides a more straightforward and 

quicker solution than the Bayesian approach. However, to estimate parameters with probability 

with the goal of obtaining the model with global optima, the MCMC method would be more 

beneficial. When used with the simulated and real data, in a Bayesian context, the MCMC method 

tended to require more computation time to converge to the global optima. That is because the 

Bayesian approach involves difficulties such as a longer running time of the Markov chains for 

convergence, and sufficiently large samples drawn for accurate estimation. In contrast, the MLE 

approach required less computation time. However, the multiple estimations of HMMs, which 

require as much computation time as the MCMC method, were needed to obtain the best model in 

terms of the likelihood, as the global optima are not guaranteed in the MLE approach. Despite the 

extended computation time required, the MCMC method has some characteristics that favors its 

use in practice. First of all, thanks to the Bayesian property, the MCMC method can capture the 

uncertainty of the segmentation results—which allows use of this uncertainty to evaluate the 

resulting segments. Secondly, with a proper number of iterations in the MCMC procedure, the 

global optimum can be achieved so that the most probable segmentation is provided. Lastly, 

because the MCMC approach is very flexible, we can control the minimum length of a segment 

by modifying the prior of the transition probability. Also, by using a specific prior for the emission 
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probability, we can obtain the more favorable means of each state. For example, the condition 

score in TxDOT is categorized in five different levels: very good, good, fair, poor, and very poor. 

We can assign priors that correspond to the range of each level to produce five states for which 

mean values are close to the predefined range. 

The MCMC method does also have some limitations. As mentioned earlier, the approach needs 

many iterations to converge so that bias caused by the starting values and Monte Carlo error can 

be negligible. Thus, the computation time for estimating a large network, such as Texas highway 

network, would be significant. In addition, determining the hyperparameter of the prior distribution 

is difficult. Since the results significantly depend on the value, they should be selected subjectively 

to obtain reasonably practical segmentation. There are several opportunities to enhance the 

Bayesian approach for future work. A sensitive study should be performed to explore the effect of 

prior selection for both transition and emission probabilities. By doing so, the minimum length of 

a segment and the mean of each state can be controlled in a more sophisticated way. Furthermore, 

a method to estimate the HMM using multivariate observations was not implemented in this study. 

Incorporating multiple measurements of ride quality and pavement condition simultaneously, a 

method using multivariate observations would provide more practical and accurate segmentation 

results. 

We presented an application of the segmentation method to identify M&R project boundaries using 

multi-attribute data. The method yielded very promising results with significant benefits—not only 

identifying the M&R project limits but also producing segmentation based on current pavement 

conditions by incorporating the initial value of condition measurements. There are several 

limitations of the framework. Because the MLE method is used to estimate HMM parameters, it 

does not guarantee the global optima when it comes to obtaining the maximum likelihood. 

Therefore, multiple runs of the MLE process should be conducted to reach the near-optimal 

solution. Also, when the label switching problem occurs, we cannot obtain a state corresponding 

to M&R project segments with a consistent label. Furthermore, to ensure the minimum length of 

a segment is greater than a practical length, post-processing is required to merge some segments 

using somewhat subjective judgement. 
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